@inproceedings{thomson-reiter-2021-generation,
title = "Generation Challenges: Results of the Accuracy Evaluation Shared Task",
author = "Thomson, Craig and
Reiter, Ehud",
editor = "Belz, Anya and
Fan, Angela and
Reiter, Ehud and
Sripada, Yaji",
booktitle = "Proceedings of the 14th International Conference on Natural Language Generation",
month = aug,
year = "2021",
address = "Aberdeen, Scotland, UK",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.inlg-1.23",
doi = "10.18653/v1/2021.inlg-1.23",
pages = "240--248",
abstract = "The Shared Task on Evaluating Accuracy focused on techniques (both manual and automatic) for evaluating the factual accuracy of texts produced by neural NLG systems, in a sports-reporting domain. Four teams submitted evaluation techniques for this task, using very different approaches and techniques. The best-performing submissions did encouragingly well at this difficult task. However, all automatic submissions struggled to detect factual errors which are semantically or pragmatically complex (for example, based on incorrect computation or inference).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="thomson-reiter-2021-generation">
<titleInfo>
<title>Generation Challenges: Results of the Accuracy Evaluation Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Craig</namePart>
<namePart type="family">Thomson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anya</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angela</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaji</namePart>
<namePart type="family">Sripada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Aberdeen, Scotland, UK</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Shared Task on Evaluating Accuracy focused on techniques (both manual and automatic) for evaluating the factual accuracy of texts produced by neural NLG systems, in a sports-reporting domain. Four teams submitted evaluation techniques for this task, using very different approaches and techniques. The best-performing submissions did encouragingly well at this difficult task. However, all automatic submissions struggled to detect factual errors which are semantically or pragmatically complex (for example, based on incorrect computation or inference).</abstract>
<identifier type="citekey">thomson-reiter-2021-generation</identifier>
<identifier type="doi">10.18653/v1/2021.inlg-1.23</identifier>
<location>
<url>https://aclanthology.org/2021.inlg-1.23</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>240</start>
<end>248</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generation Challenges: Results of the Accuracy Evaluation Shared Task
%A Thomson, Craig
%A Reiter, Ehud
%Y Belz, Anya
%Y Fan, Angela
%Y Reiter, Ehud
%Y Sripada, Yaji
%S Proceedings of the 14th International Conference on Natural Language Generation
%D 2021
%8 August
%I Association for Computational Linguistics
%C Aberdeen, Scotland, UK
%F thomson-reiter-2021-generation
%X The Shared Task on Evaluating Accuracy focused on techniques (both manual and automatic) for evaluating the factual accuracy of texts produced by neural NLG systems, in a sports-reporting domain. Four teams submitted evaluation techniques for this task, using very different approaches and techniques. The best-performing submissions did encouragingly well at this difficult task. However, all automatic submissions struggled to detect factual errors which are semantically or pragmatically complex (for example, based on incorrect computation or inference).
%R 10.18653/v1/2021.inlg-1.23
%U https://aclanthology.org/2021.inlg-1.23
%U https://doi.org/10.18653/v1/2021.inlg-1.23
%P 240-248
Markdown (Informal)
[Generation Challenges: Results of the Accuracy Evaluation Shared Task](https://aclanthology.org/2021.inlg-1.23) (Thomson & Reiter, INLG 2021)
ACL