Attention Is Indeed All You Need: Semantically Attention-Guided Decoding for Data-to-Text NLG

Juraj Juraska, Marilyn Walker


Abstract
Ever since neural models were adopted in data-to-text language generation, they have invariably been reliant on extrinsic components to improve their semantic accuracy, because the models normally do not exhibit the ability to generate text that reliably mentions all of the information provided in the input. In this paper, we propose a novel decoding method that extracts interpretable information from encoder-decoder models’ cross-attention, and uses it to infer which attributes are mentioned in the generated text, which is subsequently used to rescore beam hypotheses. Using this decoding method with T5 and BART, we show on three datasets its ability to dramatically reduce semantic errors in the generated outputs, while maintaining their state-of-the-art quality.
Anthology ID:
2021.inlg-1.45
Volume:
Proceedings of the 14th International Conference on Natural Language Generation
Month:
August
Year:
2021
Address:
Aberdeen, Scotland, UK
Editors:
Anya Belz, Angela Fan, Ehud Reiter, Yaji Sripada
Venue:
INLG
SIG:
SIGGEN
Publisher:
Association for Computational Linguistics
Note:
Pages:
416–431
Language:
URL:
https://aclanthology.org/2021.inlg-1.45
DOI:
10.18653/v1/2021.inlg-1.45
Bibkey:
Cite (ACL):
Juraj Juraska and Marilyn Walker. 2021. Attention Is Indeed All You Need: Semantically Attention-Guided Decoding for Data-to-Text NLG. In Proceedings of the 14th International Conference on Natural Language Generation, pages 416–431, Aberdeen, Scotland, UK. Association for Computational Linguistics.
Cite (Informal):
Attention Is Indeed All You Need: Semantically Attention-Guided Decoding for Data-to-Text NLG (Juraska & Walker, INLG 2021)
Copy Citation:
PDF:
https://aclanthology.org/2021.inlg-1.45.pdf
Code
 jjuraska/data2text-nlg
Data
ViGGO