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Abstract

High-quality arguments are an essential part
of decision-making. Automatically predicting
the quality of an argument is a complex task
that recently got much attention in argument
mining. However, the annotation effort for this
task is exceptionally high. Therefore, we test
uncertainty-based active learning (AL) meth-
ods on two popular argument-strength data
sets to estimate whether sample-efficient learn-
ing can be enabled. Our extensive empirical
evaluation shows that uncertainty-based acqui-
sition functions can not surpass the accuracy
reached with the random acquisition on these
data sets.

1 Introduction

Argumentative quality plays a significant role in
different domains of social activity where informa-
tion and idea exchange are essential, such as the
public domain and the scientific world. Theoretical
discussions about what constitutes a good argument
can be traced back to the ancient Greeks (Smith,
2020). Researchers nowadays continue exploring
this topic, trying out approaches that employ empir-
ical machine learning estimation techniques (Simp-
son and Gurevych, 2018).

One of the most expensive and time-consuming
tasks for machine learning-driven argument
strength prediction is data labeling. Here, the re-
sult is highly dependent on the quality of labels,
while the annotation task demands cognitive and
reasoning abilities. One way to guarantee good
annotations is to perform labeling with schooled
experts, raising project costs extensively. For this
reason, a common approach involves employing
crowd workers. As argument strength detection
is a highly subjective task, crowd workers’ label-
ing results are often identified by low reliability
and prompt researchers to counter-check the results
with more crowd workers and as specifically de-
veloped agreement-based techniques. Sometimes

a threshold for agreement cannot be reached at all,
which might lead to data loss (see e.g. (Habernal
and Gurevych, 2016a; Toledo et al., 2019).

This motivates us to investigate the applicability
of some existing methods for reducing the amount
of training data for automatic argument strength
prediction. To this end, we look closely at the
technique of active learning (AL). In this paper,
we evaluate standard uncertainty-based acquisi-
tion functions for the argument strength predic-
tion. We perform several experiments for the task
of binary argument-pair classification (see Table
1) with several uncertainty-based data selection
rounds. Our findings show that uncertainty-based
AL techniques do not provide any advantages com-
pared to random selection strategies. The cold-
start problem and unreliable nature of annotations
concerning argument strength might constitute the
reasons for the failure of these techniques.

Argument 1 Argument 2
School uniforms are a
BAD idea. I’m to
lazy to explain it but
trust me, I wore them
4 years.

School uniform cant
save person out of cold
or heat like special
clothes. It is not com-
fortable when you sit
for an hours in a class-
room.

Table 1: Example of an argument pair both argu-
ing against school uniforms (Habernal and Gurevych,
2016b)

2 Related Work

2.1 Argument Quality Estimation

In general, there is no agreement on how to opera-
tionalize argumentation quality (Toledo et al., 2019;
Wachsmuth et al., 2017; Simpson and Gurevych,
2018; Persing and Ng, 2015; Lauscher et al., 2020).
In some studies, argument strength is regarded in
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its persuasiveness and quantified as the proportion
of people persuaded by the given argument (Haber-
nal and Gurevych, 2016b; Persing and Ng, 2015;
Toledo et al., 2019). Persuasiveness makes argu-
ment strength easy to operationalize and serves as
a way of dealing with the unclear nature of the con-
cept by approximating its meaning through relying
on the majority’s wisdom. This approach lies at the
center of the crowd-sourcing data labeling efforts
and is the most common approach undertaken in
existing data sets. This limits the reliability of the
labels attained in such a manner, though, due to the
highly subjective nature of such labels.

2.2 Active Learning

Active learning is defined as a machine learning
technique designed to assist in annotating unla-
belled data sets by automatically selecting the most
informative examples, which are subsequently la-
beled by human experts (the so-called oracles) (Hu,
2011; Cohn et al., 1996). A popular approach to
estimating the informativeness of single data points
involves quantifying model uncertainty from a sam-
ple of stochastic forward passes for a given data
point. Common techniques such as entropy, mutual
information, or variation ratios (see Appendix A.1
for more details) reportedly help reach good results
on a range of tasks on high-dimensional data, e.g.,
in Computer Vision or Natural Language Process-
ing (Gal et al., 2017; Siddhant and Lipton, 2018;
Hu, 2011). The assumption behind this is that in
this way, data points which are closest to the deci-
sion boundary can be selected, helping to fine-tune
the line dividing the classes most efficiently.

So far, AL in argument mining has received little
attention. In the work of (Ein-Dor et al., 2020), the
authors propose an Iterative Retrospective Learning
(IRL) variant for the argument mining task. Their
approach, however, is focused on solving the class
imbalance problem between arguments and non-
arguments and is precision- rather than accuracy-
oriented as AL is. Another approach is suggested
by (Simpson and Gurevych, 2018). They apply
the Gaussian process preference learning (GPPL)
method for performing AL for estimating argument
convincingness, which the authors expect to be
helpful against the cold-start problem.

3 Data Set

For our analysis, we use two publicly available
data sets suitable for the task of pairwise argument

strength prediction:

• UKPConvArg1Strict, published by (Habernal
and Gurevych, 2016b), consists of 11,650 ar-
gument pairs distributed over 16 topics.

• IBM-9.1kPairs, presented by (Toledo et al.,
2019) consists of 9,125 argument pairs dis-
tributed over 11 topics.

Because supporting and opposing arguments of-
ten share the same vocabulary and semantics, we do
not treat each stance within a given topic as a sepa-
rate topic, contrary to the authors of the two data
sets. Instead, we combine the "for" and "against"
arguments within the same topic under the same
topic index and, thus, avoid leakage of semantic
information between train and test data split. This
preprocessing makes the performance of our mod-
els not directly comparable with the performance
from the original papers. However, reproducibil-
ity of the original papers’ results is beyond the
scope of this work, as our focus lies on testing AL
acquisition functions instead of reaching higher
performance with our models.

Due to the high computational costs of the AL
process, we decide to select the three most repre-
sentative topics from each data set. One way to
reach high representativeness would be to select
topics that are average in difficulty. Since we try to
approximate a real-world setting where the labels
are unknown, it is not clear at the beginning which
topics are more challenging to learn than the others.
For this reason, we decide to select our test topics
according to their size. Thus, we cross-validate our
models on each data set’s smallest topic, the largest
one, and the median-sized one. Thus, the topics we
select according to this procedure are topics 10 ("Is
the school uniform a good or bad idea?"), 13 ("TV
is better than books") and 14 ("Personal pursuit
or advancing the common good?") in UKPCon-
vArg1Strict and topics 3 ("Does social media bring
more harm than good?"), 4 ("Should we adopt cryp-
tocurrency?") and 7 ("Should we ban fossil fuels?")
in IBM-9.1kPairs data.

4 Experimental Setting

4.1 Research Design

This study aims to test the hypothesis that
uncertainty-based data acquisition strategies can
help to achieve a better model performance than
a mere random selection of the data for argument
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strength estimation. We test this by comparing dif-
ferent data selection strategies against random data
selection, serving as a baseline.

We test our acquisition strategies on a task of
pairwise (relative) argument strength comparison,
constructed as a binary classification task, for
which we use the UKPConvArg1Strict (Habernal
and Gurevych, 2016b) and IBM-9.1kPairs (Toledo
et al., 2019) data sets. The code to our experiments
is publicly available.1

In order to employ uncertainty-based acquisition
functions, we need to measure model uncertainty
at prediction time. This is possible either by using
Bayesian methods or by approximating their effect
via obtaining distributions for output predictions
by some other means. Based on the ground work
layed out by (Gal and Ghahramani, 2016), who
show that dropout training in deep neural networks
help approximate Bayesian inference in deep Gaus-
sian processes, we design our experiments as MC
dropout. With this, we simulate several stochas-
tic forward passes through the model at prediction
time and sample repeatedly from softmax outputs
to obtain prediction distributions.

4.2 Method and Procedure

Similar to the procedure stipulated by (Toledo et al.,
2019), we fine-tune the pre-trained BERT-Base Un-
cased English (Devlin et al., 2018) for the task of
binary argument-pair classification by adding a sin-
gle classification layer on top. The BERT architec-
ture includes dropout layers with a probability of
0.1 (Devlin et al., 2018). We keep it this way, which
allows us to approximate model uncertainty as de-
scribed above and test the uncertainty-based acqui-
sition functions on the fine-tuned BERT-based. To
do that, we enable dropout at inference time.

In order to estimate topic difficulty and validate
our topic selection procedure described above, we
train and test the models on all available labels of
both data sets separately with the method of k-fold
cross-validation, where k stands for the respective
number of topics in a given data set. We separate
every topic and use it as test data, with model train-
ing performed on the rest of the data, which helps
to isolate the topics and measure their respective
difficulty.

Our active learning experiments are conducted
in a setting of a 3-fold cross-validation, with 3 indi-

1https://github.com/nkees/
active-learning-argument-strength

cating the number of most representative topics se-
lected by us from the given data sets, as mentioned
in Section 3. Thus, in each fold in our experiments,
we test on one of the three selected topics for each
data set (holdout data) and train on the rest of the
compete data set (train-dev).

The train-dev data in each fold consists of ran-
dom splits into train (85%) and validation (15%)
data, whereas the validation, or development, data
are used for measuring the goodness of fit of the
model trained on the training data. Having sepa-
rated and fixed the validation data, a batch of 130
argument pairs is selected randomly from the train
split. These data are used as initial training data on
which bert-base-uncased is fine-tuned according to
our classification task.

Model evaluation is performed via accuracy mea-
surement. Training on each of the three folds per
data set is conducted ten times for improved re-
liability of the results. Thus, for each fold, we
produce ten validation splits and ten initial train-
ing data batches to add some randomness into the
experiments but in a controlled manner. They are
kept fixed for every training fold to control for the
effect of random initial data selection and enable a
reliable comparison between the acquisition func-
tions.

We add another 130 argument pairs in each learn-
ing round and re-train the fine-tuned model. Within
this setting, the whole data set would be selected
within approx. 55 iterations for IBM-9.1kPairs data
and approx. 72 iterations for UKPConvArg1Strict
data (when calculated with the median-sized test
split size). In an attempt to minimize the burden
associated with heavy training, we decide to limit
each active learning process to (less than) a half
iterations, stopping at the 27th iteration.

Further details on the hyperparameters and the
computing and software infrastructure can be found
in Appendix sections A.2 and A.4.

4.3 Acquisition Functions

We perform AL on three uncertainty-based acquisi-
tion functions one by one. In particular, we com-
pare the performance of variation ratios, entropy,
and BALD (Houlsby et al., 2011; Gal et al., 2017)
against a random acquisition baseline. For each of
the learning rounds, we acquire data based on the
heuristics calculated over a sample of 20 stochastic
forward pass outputs. Our expectation is that other
measures will outperform the random acquisition.

https://github.com/nkees/active-learning-argument-strength
https://github.com/nkees/active-learning-argument-strength
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5 Results

For the estimation of the performance of the mod-
els trained on the whole data with k-fold cross-
validation, we reach a comparable performance of
our BERT-based binary classification technique on
both of the data sets (average accuracy on UKP-
ConvArg1Strict: 0.76, on IBM-9.1kPairs: 0.77).
This is a slightly worse performance than (Toledo
et al., 2019) achieves with the same architecture;
the reason could be attributed to a different topic
attribution strategy, as well as to some differences
in the used hardware or hyperparameters, such as
batch size or the number of epochs.

We find that the topics selected by us from the
UKPConvArg1Strict stand rather on the low end
of difficulty, with model accuracy tending towards
the upper end of the scale when validated on these
topics: all of them are higher than the mean per-
formance of 0.76 (see Appendix A.3 for more de-
tails). However, from the distribution point of view,
two of the topics, namely 10 and 13, yield median
model performance, making them, in our opinion,
suitable representatives of the whole data.

As for the IBM-9.1kPairs data set, our selected
topics produce on average comparable performance
with the model performance on the whole topic set
(accuracy of 0.776 vs. 0.77 respectively). They
also represent the most difficult topic, the easiest
topic, and one closely neighboring the median topic
(accuracy of 0.78 being slightly higher than the me-
dian performance of 0.77). In this case, the selected
topics provide a better representation of the whole
data set and grant strong validity when it comes to
generalizing the results of our experiments.

The series of experiments we conducted in or-
der to test whether our proposed heuristics for AL
data acquisition provide us with any significant im-
provement surprisingly do not reveal any heuristic
which would perform better than in the case of a
random acquisition. This is true both for UKP-
ConvArg1Strict and IBM-9.1kPairs data; a detailed
overview is presented in Tables 2 and 3. Statistical
significance of the results has been tested with a
Wilcoxon signed-rank test, which provides a non-
parametric alternative to the paired T-test and is
more suitable due to the non-Gaussian distribution
of the differences in the results.

All heuristics result in performance that is lower
than that of the random baseline. All of our results
are statistically significant with p-values ≤ 0.0001.

Despite the fact that random acquisition turns out

Heuristic Mean Variat. Avg.Diff.
random (b.) 0.747 0.0881 -

entropy 0.7388 0.0925 -0.0082
variation ratios 0.7368 0.0922 -0.0103

bald 0.7377 0.0928 -0.0093

Table 2: Results of active learning experiments on
UKPConvArg1Strict. Abbreviations: b. stands for
baseline, variat. stands for variation, avg.diff. stands
for average difference. Negative average difference
means that the challenger heuristic has not outper-
formed the baseline.

Heuristic Mean Variat. Avg.Diff.
random (b.) 0.7491 0.0855 -

entropy 0.7414 0.0878 -0.0077
variation ratios 0.7377 0.0923 -0.0114

bald 0.7412 0.0882 -0.0079

Table 3: Results of active learning experiments on IBM-
9.1kPairs. Abbreviations: b. stands for baseline, variat.
stands for variation, avg.diff. stands for average differ-
ence. Negative average difference means that the chal-
lenger heuristic has not outperformed the baseline.

to be the best one in terms of performance, with
our results being consistent through both data sets
and the difference being statistically significant, it
is still noticeable that the differences in each case
are rather small (see Figures 1 and 2 for graphic vi-
sualization of the model performance during active
learning rounds comparing the acquisition func-
tions).

6 Discussion

The results of our experiments do not point to
any acquisition functions which outperform ran-
dom acquisition. This finding does not exclude the
possible existence of some other suitable acquisi-
tion functions, even from the same class (such as
uncertainty-based). This remains an open question
and should be considered in further research on the
topic. For the time being, the random acquisition
should be considered the approach of choice when
selecting data for labeling for the task of pairwise
argument strength prediction. This is sensible both
from an accuracy standpoint as well as due to the
computational cheapness of a random process.

As the literature suggests, a possible reason
why uncertainty-based methods perform so unim-
pressively is their proneness to picking outliers
– a disadvantage that some other methods, such
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Figure 1: Overview of the training results on the UKP-
ConvArg1Strict dataset based on different uncertainty-
based acquisation methods

Figure 2: Overview of the training results on the IBM-
9.1kPairs dataset based on different uncertainty-based
acquisition methods

as diversity-based acquisition (e.g., (Sener and
Savarese, 2018), do not have. This might be es-
pecially critical in the realm of argument strength
prediction, as outliers might represent the argu-
ments where relative argument strength difference
is marginal, the data are noisy, or where the pro-
vided labeling is too subjective. Another critical
factor is the cold-start problem, i.e., overfitting on
the small initial data set of data, for which no ini-
tial informativeness estimation could be performed.
This poses a drawback for the uncertainty-based
methods, relying on the initial data sample for sub-
sequent data acquisition.

7 Conclusion

This paper evaluates the effect of uncertainty-based
acquisition functions, such as variation ratios, en-
tropy, and BALD, on the model performance in
the realm of argument strength prediction. As no
acquisition function tested helps improve model

performance in comparison to the random acquisi-
tion, we have not found any justification for using
uncertainty-based active learning for pairwise argu-
ment strength estimation.
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A Appendix

A.1 Uncertainty-based Acquisition Functions
In our work, we refer in particular to the following
uncertainty-based acquisition functions (Gal et al.,
2017):

• variation ratios: given a set of labels yT from
T stochastic forward passes, variation ratio for
a given input point is calculated as:

varrat(x) = 1− fx
T

(1)

with fx denoting the number of times the most
commonly occurring category (mode of the
distribution) has been sampled. This serves
as an indication of how concentrated the pre-
dictions are, with 0.5 being the highest disper-
sion, i.e. uncertainty, and 0 being the highest
concentration (certainty) in the case of binary
classification.

• predictive entropy: stems from information
theory and is calculated by averaging the soft-
max values for each class :

predentr(x) = −
∑
c

p(y = c|x, Dtrain)

× log2(p(y = c|x, Dtrain)),
(2)

where p(y = c|x, Dtrain) stands for average
probability of a data point adhering to a spe-
cific class given the outputs of the stochastic
forward passes and the training data. c de-
notes the label class, i.e. we sum the values
over all the classes to receive a measure of
entropy for a given data point.

• Bayesian Active Learning by Disagree-
ment (BALD) (Houlsby et al., 2011), also
called mutual information (Gal, 2016), is a
function of predictive entropy as described
above and averaged predictive entropies that
have been calculated separately for each out-
put:

bald(x) = −[
∑
c

p(y = c|x, Dtrain)

× log(p(y = c|x, Dtrain))]

+ Ep(ω|Dtrain)[
∑
c

p(y = c|w, ω)

× log(p(y = c|x, ω))].

(3)
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A.2 Computing & Software Infrastructure
The experiments were conducted on a Ubuntu
18.04 system with an AMD Ryzen Processor with
16 CPU-Cores, 126 GB memory, and a single
NVIDIA RTX 2080 GPU with 11 GB memory.
We further used Python 3.7, PyTorch 1.4 and the
Huggingface-Transformer library (2.11.0).

A.3 Topic Size and Difficulty

No. Topic Size Acc.
0 Ban Plastic Water Bottles? 688 0.86
1 Christianity or Atheism 588 0.81
2 Evolution vs. Creation 782 0.78
3 Firefox vs. Internet Explorer 748 0.81
4 Gay marriage - right or wrong? 851 0.8
5 Should parents use spanking? 706 0.76
6 If your spouse committed murder, would you turn them in? 687 0.67
7 India has the potential to lead the world 822 0.81
8 Is it better to have a lousy father or to be fatherless? 616 0.64
9 Is porn wrong? 571 0.79
10 Is the school uniform a good or bad idea? 878 0.78
11 Pro choice vs. Pro life 845 0.61
12 Should physical edu. be mandatory? 568 0.74
13 TV is better than books 747 0.79
14 Personal pursuit or common good? 733 0.84
15 Farquhar as the founder of Singapore 820 0.7

Total Size/Average Acc. 11 650 0.76

Table 4: Topic sizes in UKPConvArg1Strict. Topics
are provided with their corresponding numbers and size
within the data set, as well as our model’s performance
at test time. The topics selected for testing the acquisi-
tion functions have been highlighted in italics.

No. Topic Size Acc.
0 Should flu vaccinations be mandatory? 731 0.75
1 Should gambling be banned? 503 0.8
2 Does online shopping bring more harm than good? 278 0.79
3 Does social media bring more harm than good? 2587 0.78
4 Should we adopt cryptocurrency? 719 0.82
5 Should we adopt vegetarianism? 1073 0.77
6 Should we sale violent video games to minors? 484 0.74
7 Should we ban fossil fuels? 263 0.73
8 Should we legalize doping in sport? 737 0.77
9 Should we limit autonomous cars? 1217 0.79
10 Should we support information privacy laws? 533 0.77

Total Size/Average Acc. 9 125 0.77

Table 5: Topic sizes in IBM-9.1kPairs. Topics are pro-
vided with their corresponding numbers and size within
the data set, as well as our model’s performance at test
time. The topics selected for testing the acquisition
functions have been highlighted in italics.

A.4 Hyperparameters
For the evaluation we initialized all methods for ten
runs with different seeds and reported the mean
accuracy score. We used early stopping with a
patience of three on a pre-selected validation set for
regularization. As loss function we used weighted
binary-cross-entropy for the (relative) Argument
Strength task.

We train our models on top of the pre-trained
BERT-Base uncased with a dropout probability of
0.1. Learning rate is 2−5 (same as in (Toledo et al.,
2019)). The batch size per GPU is 64 and the model
is validated after every half epoch.


