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Abstract

Traditional translation systems trained on writ-
ten documents perform well for text-based
translation but not as well for speech-based ap-
plications. We aim to adapt translation models
to speech by introducing actual lexical errors
from ASR and segmentation errors from au-
tomatic punctuation into our translation train-
ing data. We introduce an inverted projec-
tion approach that projects automatically de-
tected system segments onto human transcripts
and then re-segments the gold translations to
align with the projected human transcripts. We
demonstrate that this overcomes the train-test
mismatch present in other training approaches.
The new projection approach achieves gains
of over 1 BLEU point over a baseline that is
exposed to the human transcripts and segmen-
tations, and these gains hold for both IWSLT
data and YouTube data.

1 Introduction

Speech translation is an important field that be-
comes more relevant with every improvement to
its component technologies of automatic speech
recognition (ASR) and machine translation (MT).
It enables exciting applications like live machine
interpretation (Cho and Esipova, 2016; Ma et al.,
2019) and automatic foreign-language subtitling
for video content (Karakanta et al., 2020).

However, translation of speech presents unique
challenges compared to text translation. Traditional
text translation systems are often trained with clean,
well-structured text consisting of (source language,
target language) sentence pairs gathered from text
documents. This works well for translating written
text, but for cascaded systems composed of speech
→ automatic transcription → automatic transla-
tion, errors from ASR and automatic punctuation
are amplified as they pass through the translation
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system. Such systems suffer from three issues: 1)
spoken language structure is different from written
language structure and can include aspects like dis-
fluencies and partial sentences, 2) ASR systems are
not perfect and introduce errors in the stage from
speech to source transcript, and 3) mistakes from
automatic punctuation systems can lead to unnat-
ural sentence segments and boundaries (Makhija
et al., 2019; Nguyen et al., 2019; Wang et al., 2019).
These problems can lead to poor translations and
pose unique challenges for MT that are not readily
addressed by current methods. In this work, we
set out to make MT robust to the second and third
issues in particular.

We have developed an approach to train transla-
tion models that are robust to transcription errors
and punctuation errors, by introducing errors from
actual ASR and automatic punctuation systems into
the source side of our MT training data. This is sim-
ilar in spirit to the method of Li et al. (2021), which
introduces artificial sentence boundary errors into
the training bitext. However, instead of artificial
boundaries, our segmentation approach uses actual
boundaries generated by the automatic punctuation
system, which required the development of our in-
verted projection technique, and we also include
errors from ASR. For a small subset of our training
set, we assume access to long-form source audio
documents, their corresponding human transcrip-
tions, and translations of those transcriptions. This
makes it possible to compare the performance of a
baseline model trained on the human transcription
with a model trained on source sentences derived
from applying ASR transcription and automatic
punctuation to the same audio.

Our primary contributions are first to show
how to produce training data that captures the er-
rors from automatic transcription and punctuation,
which requires a non-trivial re-segmentation of the
reference translation that we call inverted projec-
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tion; and second to show experimentally that it is
actually more important to expose the MT system
to segmentation errors than lexical transcription
errors when aiming for speech-robust MT.

2 Background

Compounding errors from ASR are known to cause
problems when cascaded into MT (Ruiz et al.,
2017). These issues are one of the main moti-
vators for end-to-end modeling of speech trans-
lation (Weiss et al., 2017; Bansal et al., 2018; Sper-
ber et al., 2019). However, we consider end-to-end
modeling out of scope for this study since we aim
to benefit from the modularity that comes with a
cascaded speech translation strategy. To improve a
cascade’s robustness to speech input, one can train
the MT system with some combination of artificial
errors, actual ASR output, or long-form segmenta-
tion errors. We discuss each in turn.

Introducing artificial errors into the training set
has the advantage of being efficient, and not neces-
sarily tied to a specific ASR system. One can add
Gaussian noise to the source embeddings (Cheng
et al., 2018) or induce lexical substitutions that may
be informed by phonetics (Li et al., 2018; Liu et al.,
2019). Sperber et al. (2017) experiment with a
noise model that can perform insertions, deletions
and substitutions, but find little value in refining
the substitutions to account for word frequency or
orthographic similarity.

More related to our efforts are those that use
actual ASR output. Early experiments used ASR
output to replace the source side of parallel text dur-
ing training (Post et al., 2013; Sperber et al., 2017).
These did not perform well, likely because ASR
word error rates (WER) on the Fisher Corpus were
more than 40%, resulting in an unreliable train-
ing signal. Recently, Cheng et al. (2019) showed
that, given ASR training corpora (coupled audio-
transcription pairs), one can build a robust MT sys-
tem by training with the normal MT objective on
MT corpora, plus a mixture of: (1) an adversarial
objective that tries to bring encoder representations
for ASR output close to those of human transcrip-
tions; and (2) a normal MT objective that has ASR
output as source and machine translations of human
transcripts as target. In an IWSLT TED translation
scenario, they showed large improvements (+2.5
BLEU) using the second idea alone, which we take
as a strong signal that there is much to be gained
by training with ASR output on the source side.

Segment
Token

Human System

Human Baseline
Token

Robustness

System
Segment

Robustness
System

Robustness

Table 1: Combinations of segments and tokens.

We consider a long-form scenario where sen-
tence boundaries for the input audio are not given
at test time. As such, the method of Li et al. (2021)
to make MT robust to segment boundary errors is
very relevant. They introduce artificial sentence
boundary errors in their training bitext. They first
fragment adjacent source sentences, and then pro-
duce analogous fragments in the target according
to proportional token lengths. We draw inspiration
from their approach when building the target sides
of our inverted projections.

3 Methods

Our approach to producing MT systems that are
robust to automatic transcription errors is to in-
troduce errors from our ASR system into our MT
training data. Throughout the discussion of our
methods, we make use of both human (manual) and
system (automated) transcriptions of the source au-
dio. When discussing the target-side of our training
data, we use instead the term “gold” to indicate a
trusted reference translation. Throughout our ex-
periments, the gold standard is a human translation
of the human transcript (Post et al., 2013; Sperber
et al., 2017), though it could just as easily, and
much less expensively, be a machine translation of
the human transcript (Cheng et al., 2019).

We divide transcription errors into two cate-
gories: token and segment errors. A token error is
any word that is transcribed incorrectly by ASR,
such as a homophone substitution or the omission
of a mumbled word. Meanwhile, segment errors
are introduced by failing to correctly break the rec-
ognized text into sentence-like segments. A human
transcription is expected to have error-free tokens
and segments.

Table 1 presents a baseline and three ways
to turn long-form Audio-Transcript-Translation
triples into robust training data suitable for fine-
tuning an NMT model. Training models with hu-
man tokens and segments is the common transla-
tion mode, so we mark it here as Baseline. Training
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Human I checked the weather – this evening . It will rain tomorrow .
System I checked the whether . This evening – it will rein tomorrow .

Table 2: Our running example of human and system transcriptions, with the system having both lexical and seg-
mentation errors. The Levenshtein alignment is given by column alignment, with – indicating insertion or deletion.

with system tokens and human segments is the ap-
proach taken by others such as (Cheng et al., 2019),
resulting in Token Robustness. In the case of long-
form ASR, the human segments can be projected
onto the ASR output. This is an effective approach
for exposing the training model to token errors
from ASR, but it has an important disadvantage,
as it results in a train-test mismatch because the
human segments seen during training will not be
available at inference time. We describe this ap-
proach in Section 3.2 to provide a comparison to
our approaches using system segments and to intro-
duce some of the concepts and tools used in those
approaches.

The two approaches using system segments are
the main innovations in this paper. Introducing seg-
ment errors alone results in Segment Robustness
(Section 3.3), while segment and token errors to-
gether result in System Robustness (Section 3.4);
that is, MT that is robust to the complete long-form
transcription pipeline. We will show in the follow-
ing sections how we can project system segments
onto the source and target text; we call this an in-
verted projection.

3.1 Levenshtein Projection

A key component to all of the approaches in Ta-
ble 1 is an alignment between the system (ASR)
transcription and a human transcription of the same
long-form audio. Inspired by common practice in
evaluation for long-form speech translation (Ma-
tusov et al., 2005), we employ a token-level, case-
insensitive Levenshtein alignment of the two tran-
scripts. The Levenshtein alignment is monotonic,
parameter-free, and its dynamic programming al-
gorithm is fast enough to be easily applied to very
long sequences. We show an example alignment
in Table 2. By tracking the alignment of tokens
immediately before segment boundaries (always
end-of-sentence periods in our example), we can
project segment boundaries from one transcription
to another, which allows us to produce the various
entries in Table 1, as we describe in more detail in
the following subsections.

3.2 Token Robustness Training

The first approach to training on ASR sentences
is straightforward and is a variant of a published
result by Cheng et al. (2019). We Levenshtein-
align the human transcript to the system transcript,
and project the human sentence boundaries onto
ASR. Since each human transcript is already paired
with a gold standard translation, this projection
makes it easy to align each projected ASR segment
with a gold translation. We then train the model
with (projected-ASR-source, gold translation) pairs.
The Token Robustness training pair derived from
our running example from Table 2 is shown in
Table 3. The resulting source sentence, marked
with ∗, has ASR token errors but human segment
boundaries.

The main advantage of this approach is that it
uses the gold translations as written; the model
trains on well-formed translations. However, it suf-
fers from a serious disadvantage: the model will
only train on human segment boundaries, although
at test time we will translate according to system
segment boundaries, resulting in a train-test mis-
match. Our experiments in Section 5 demonstrate
that this is a serious drawback. In fact, when the
WER is low, the token errors present in Token Ro-
bustness training are ignored by the model since
they are overwhelmed by segment errors. In Sec-
tion 3.3, we introduce an approach to overcome
this limitation.

3.3 Segment Robustness Training

To address the segment-boundary train-test mis-
match present in Token Robustness training, we
can invert the projection and use system segments.
That is, we project the system segment boundaries
onto the human transcription.

System segments are derived from automatic
punctuation and sentence splitting of the system
transcription. As with Token Robustness, we
Levenshtein-align the human transcript to the sys-
tem transcript, but this time project the system seg-
mentation onto the human transcript. Unlike the
Token Robustness scenario, it is non-trivial to get
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Gold De Ich habe heute Abend das Wetter überprüft . Morgen wird es regnen .
Human En i checked the weather this evening . it will rain tomorrow .

∗ System En i checked the whether . this evening it will rein tomorrow .

Table 3: Token Robustness (∗). A Levenshtein alignment projects system tokens onto human segments. We have
greyed out punctuation and lowercased to show the actual English text used in training.

Gold De
Ich habe heute Abend das Wetter überprüft . Morgen wird es regnen .
(I have this evening) (the weather checked . It will rain tomorrow .)

+ Human En i checked the weather this evening . it will rain tomorrow .
∗∗ System En i checked the whether . this evening it will rein tomorrow .

Table 4: Segment Robustness (+) and System Robustness (∗∗). A Levenshtein alignment projects human tokens
onto system segments, and then human-transcript-to-translation length ratios are used to align the German tokens
to both. We have greyed out punctuation and lowercased to show the actual English text used in training.

corresponding segment boundaries for the gold-
standard translations when training for Segment
Robustness. We could perform a statistical word
alignment between the human transcription and its
translation to determine word-level interlingual se-
mantic correspondence, but in similar situations
such as prefix training for simultaneous transla-
tion (Niehues et al., 2018; Arivazhagan et al., 2020),
this has not resulted in improvements over a sim-
ple proportional length-based heuristic. Therefore,
we use human-transcript-to-translation length ra-
tios (in tokens) to segment the gold translations
so that their new segment lengths match the pro-
jected human source segment lengths. Finally, we
train on (projected-human-source, projected-gold-
translation) pairs. This is similar to how artifi-
cial target sentences were constructed by Li et al.
(2021), but in our case, the boundaries are deter-
mined by automatic punctuation on ASR output,
rather than from introducing boundary errors at
random.

Table 4 shows the resulting human English and
gold German segments for our running example;
the source row marked with + is used in Segment
Robustness training. To illustrate the length-ratio
token alignment, we can see that the total token
length of the human English is 12, and the gold Ger-
man is 13. The English is segmented into lengths 4
and 8, meaning the German is segmented to lengths
4/12 · 13 = 4.33 ≈ 4 and 8/12 · 13 = 8.66 ≈ 9.
The resulting references will not always semanti-
cally match the content in the new source segments.
In this example, they do not: an English gloss of
the German shows that the semantics have diverged.
But they are often close enough, and our hypothe-
sis is that the benefit of exposure to realistic source

fragments will outweigh the cost of occasional se-
mantic misalignment. Furthermore, we use this
robustness data only to fine-tune a system that has
seen many semantically valid pairs.

3.4 System Robustness Training
In Section 3.3, the inverted projection approach
was applied to the human transcripts. While this
may seem unnatural, it provides a measure of the
improvement that can be achieved by just adjusting
the training set’s source segment boundaries so
that they match what the model will see during
inference. Next, we build upon this approach by
injecting the ASR token errors into the training
data as well.

Training a model that sees both system token er-
rors and segment boundary errors involves a slight
variation on the setup in Section 3.3. We use the
same alignment approach, but here we use it only
to get projected gold translations since the system
transcripts already have system segment bound-
aries. We then train the model with (system source,
projected-gold-translation) pairs.

The main advantage of this approach is that
the source side exactly matches the pipeline, com-
pletely bridging the train-test mismatch. The dis-
advantage, as in Section 3.3, is that the system
segments may lead to fragmented or semantically
misaligned reference sentences. Table 4 marks the
source row used for System Robustness training
with a ∗∗.

4 Experimental Setup

4.1 Data
We experiment on the IWSLT English to German
(EnDe) speech translation scenario. We use the
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IWSLT 2018 EnDe training data, including both
the official training set and the leftover TED talks
not included in any other test set, for a total of about
2400 talks and 0.25M sentence pairs. We found it
beneficial to also include the 4.6M sentence pairs
of the WMT 2018 EnDe corpus (Bojar et al., 2018)
during training to increase our feasible MT model
size and MT accuracy. For the IWSLT data, we
scrape the ground truth transcripts and translations
from www.ted.com directly because we found that
the official IWSLT datasets omit transcriptions for
many sentences. Since we are interested in long-
form scenarios, we want to be sure to retain all
sentences.

We evaluate our models on past IWSLT spo-
ken language translation test sets. We use IWSLT
tst2014 (Cettolo et al., 2014) as a dev set, which
consists of 14 TED talks and about 1,200 sentences.
We test on IWSLT tst2015 (Cettolo et al., 2015),
which consists of 12 TED talks totalling about
1,200 sentences. Punctuated ASR transcriptions
are obtained from the publicly available Speech-
to-Text Google API1; using a separate ASR sys-
tem in this way disconnects the ASR and NMT
models, improving modularity. This achieves a
WER of 5.5% on tst2015 ignoring case and punctu-
ation. We run a sentence breaker on the punctuated
source to determine the segments to be translated
by NMT. Since these segments need not match
the reference sentence boundaries, especially when
punctuation is derived automatically on ASR out-
put, we use our Levenshtein alignment as described
in Section 3 to align our translation output with the
gold-standard translation’s segments before evalu-
ating quality with case-sensitive BLEU (Matusov
et al., 2005). All models are trained and tested
on lowercased and unpunctuated versions of the
source, as doing so is known to improve robustness
to ASR output (Li et al., 2021).

4.2 Baseline

For all our experiments, we use a Transformer
model (Vaswani et al., 2017) with a model dimen-
sion of 1024, hidden size of 8192, 16 heads for
multihead attention, and 6 layers in the encoder
and decoder. The models are regularized using a
dropout of 0.3 and label smoothing of 0.1 (Szegedy
et al., 2015). We use a shared SentencePiece to-
kenizer (Kudo and Richardson, 2018) with a 32k
vocabulary. We decided on these settings through

1http://cloud.google.com/speech-to-text

hyper-parameter tuning on the IWSLT dev set.
As a baseline, we train a model that includes a

mix of WMT and human-transcribed IWSLT data,
but with no ASR-transcribed IWSLT data. During
training, for each batch, we sample 90% of data
from WMT and 10% from IWSLT. This mixture
was chosen based on the best performance of a grid-
search of weightings between these two datasets
evaluated on the IWSLT dev set. Because this
baseline has already seen the human transcripts
and translations of the IWSLT data, it has already
adapted its domain to both news and TED data.
By ensuring that this baseline has already adapted,
we are able to isolate the effects of ASR errors
and segmentation errors on the fine-tuned models.
We train the model using pairs of (source, target)
sentences, where target German translations are
untouched, retaining case and punctuation.

4.3 Model fine-tuning
Starting from the baseline, we fine-tune the model
on data from each scenario, each time starting from
the same checkpoint of the baseline. The best-
performing checkpoint of each fine-tuning exper-
iment is chosen based on the BLEU score on the
dev set, and this checkpoint is used to evaluate on
the test set. Fine-tuning is about 35x faster than
training from scratch in our configuration and con-
verges after running through less than 5 epochs of
the IWSLT data (≈0.25M sentence pairs). We re-
peat each experiment multiple times to account for
any variations in the runs.

4.4 Filtering
All of the processing steps described so far have in-
cluded all of the ASR sentences, regardless of their
quality. However, some ASR sentences have high
WER compared with the human transcripts. This
happens when, for example, the ASR transcribes
a video playing in the background that was not in-
cluded in the gold transcript. These examples can
be so egregious that they can confuse the model. To
filter the dataset, we remove only from our train-
ing set all ASR sentences with WER ≥ 50% as
compared with the human transcripts; this removes
approximately 4% of the training data. The sen-
tences with WER between 0% and 50% are useful
because they demonstrate ASR errors relative to
human transcripts but not egregious errors. We in-
clude results on this filtered set as an additional row
in our results tables. Note that the filtering is only
applied to the training data and is not applied on
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the test set since we wouldn’t have access to WER
during inference time. This should not be confused
with the average WER measured on each test set,
which is 5.5% for IWSLT (see Table 5) and 9.0%
for YouTube (see Table 6), which is an indicator
of the quality of the NMT model’s input source
sentences generated by the ASR system.

5 Results

5.1 IWSLT results

Table 5 compares the results of the different combi-
nations of segments and tokens from Table 1. For
the test set, automatic punctuation is first applied
and used to split the ASR output into sentences,
and then it is stripped of case and punctuation. Sen-
tences are translated one at a time with whatever
system is under test. The checkpoint is chosen ac-
cording to the dev set for each scenario, and the
resulting BLEU scores on the test set are presented
in the “ASR” column. For completeness, we also
compute the BLEU score on the IWSLT human
transcripts using the same model and checkpoint
and report it in the “HT” column. As expected, this
“HT” score decreases with increasing adaptation
to the system tokens and segments, but this does
not affect our results because, during inference, our
system will only be applied to ASR sentences with
automatic punctuation.

The baseline, trained from scratch using the hu-
man tokens and human segments (WMT + IWSLT),
achieves a score of 26.5 BLEU points on the ASR
set. As described in Section 4.2, this baseline train-
ing uses only 10% IWSLT data. Since the fine-
tuning experiments use 100% IWSLT data, those
models are arguably more adapted to the TED do-
main, which could contribute to any improvements
over the baseline. To control for this, we fine-tuned
an additional model on 100% human token, human
segment IWSLT data, but this yielded no improve-
ment over the baseline, likely because the baseline
has already seen this IWSLT data during training.
Thus, we didn’t include this experiment in Table 5.

All of the fine-tuning experiments in Table 5
start with the baseline from the first row, which
was trained without knowledge of the ASR tran-
scripts. The Token Robustness experiment starts
from the baseline and fine-tunes on ASR; it shows
no improvement compared to the baseline, which
indicates that the ASR errors are sufficiently subtle
compared to the segment errors so that the model
cannot adapt to them. On the other hand, the last 3

Training condition HT ASR
Baseline (human tokens and
segments)

33.6 26.5

Token Robustness (ASR
source, human segments)

32.7 26.0

Segment Robustness (human
source, system segments)

32.1 27.1

System Robustness (ASR
source, system segments)

32.1 27.4

System Robustness (ASR
source with WER ≤ 50%,
system segments)

32.3 27.6

Table 5: Results on IWSLT tst2015 data. HT stands for
“human transcript”. All numbers represent the transla-
tion BLEU, and each score is the average across 3 runs.
The ASR WER on the test sentences is 5.5%.

rows demonstrate significant gains when the text is
projected using the system segments. In particular,
the System Robustness experiment shows an im-
provement over the Segment Robustness, and the
best results are achieved with System Robustness
when removing ASR transcripts with high WER.
This yields a gain of more than 1 BLEU point over
the baseline. This indicates that, once the train-
test segment mismatch has been corrected for, the
model is able to adapt to and correct the subtle ASR
errors. These improvements indicate the value of
making the segmentation errors visible to NMT
training using the two steps of projecting source
and re-aligning translation.

The fact that our Token Robustness model does
not improve over the baseline is likely because
there are very few lexical errors since our ASR
model for English is very good, with a mean WER
of 5.5%. This is true even when we use the ap-
proach from Section 4.4 to remove high WER ASR
sentences during training (results not included in
Table 5). This is in contrast to the results of Cheng
et al. (2019), which demonstrated improvements
using ASR with human segments. Those results,
however, were achieved with the ASR model pro-
vided by IWSLT 2018, which has a much worse
WER than the ASR used in our work.2 We likely
could have replicated their result had we used a
weaker ASR model.

Our Segment Robustness approach and dataset
are similar to the synthetic segment breaks ap-

2Zenkel et al. (2018) report that the IWSLT 2018 ASR has
a WER of 22.8% on IWSLT tst2014, while the ASR used in
our experiments achieves a WER of 8.0% on the same set.
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Training condition HT ASR
Baseline (human tokens and
segments)

30.3 25.4

Token Robustness (ASR
source, human segments)

29.8 25.1

Segment Robustness (human
source, system segments)

29.3 26.6

System Robustness (ASR
source, system segments)

29.3 26.4

System Robustness (ASR
source with WER ≤ 50%,
system segments)

29.4 26.6

Table 6: Results on 88 English videos from YouTube
translated into German. No new models were trained in
these experiments: the models trained in Table 5 were
directly evaluated on these videos. The ASR WER on
the test sentences is 9.0%.

proach in (Li et al., 2021). According to Table
5, our results yielded a BLEU score of 27.1, which
is similar to the score of 27.0 reported in Table 4 of
that paper, which represents their best result from
training with synthetic segment breaks.

5.2 YouTube results
To test the generalization of our approach, we ap-
plied the models trained on the IWSLT data in Sec-
tion 5.1 to another dataset consisting of 88 English
videos selected from YouTube. The videos are se-
lected to have a single speaker, and are truncated to
a length of roughly 1 minute, perhaps interrupting
a sentence. Each of the 920 sentences in the human
transcription of these videos was professionally
translated into German.

No new models were trained in this section; ev-
ery line in Table 6 is a corresponding system from
Table 5. For each of the experiments, we take the
corresponding model trained on IWSLT and test it
on this new YouTube EnDe test set. This enables
us to determine the generalization ability of the
approach.

According to Table 6, the model performs re-
markably similar on this YouTube dataset. In par-
ticular, the improvement over the baseline of the
System Robustness in the last row is about 1.2
BLEU points, comparable to the 1.1 BLEU point
improvement in Table 5.

Note that, because the models were fine-tuned
on the IWSLT ASR dataset starting from a mix
of WMT and IWSLT, there is a domain mismatch
between this training data and the YouTube test-

ing data. Nevertheless, the System Robustness
approach shows a clear improvement. Thus, we ex-
pect that if we trained a model directly on YouTube
data, we would see even higher BLEU scores. This
is a task for future work.

6 Conclusions

To aid text-based translation models to adapt to
speech data, we introduced an inverted projection
approach that projects automatically detected sys-
tem segments onto human transcripts and then re-
segments the gold translations to align with the pro-
jected human transcripts. This approach overcomes
the train-test mismatch present in previous attempts
to train on long-form ASR output by exposing MT
training to both token and segment errors, exactly
matching the source transcription pipeline used at
test time. The results demonstrate a gain of over
1 BLEU point on both IWSLT data and YouTube
data.

For future work, we aim to train models on lan-
guages with higher ASR WER since our English
WER is very low (5.5%). We also plan to experi-
ment with MT targets during training to address the
data bottleneck. And we also plan to investigate
whether we can eliminate segmentation altogether
with document-level speech translation.
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