Robustness of end-to-end Automatic Speech Recognition Models – A Case Study using Mozilla DeepSpeech

Aashish Agarwal, Torsten Zesch


Anthology ID:
2021.konvens-1.18
Volume:
Proceedings of the 17th Conference on Natural Language Processing (KONVENS 2021)
Month:
6--9 September
Year:
2021
Address:
Düsseldorf, Germany
Editors:
Kilian Evang, Laura Kallmeyer, Rainer Osswald, Jakub Waszczuk, Torsten Zesch
Venue:
KONVENS
SIG:
Publisher:
KONVENS 2021 Organizers
Note:
Pages:
203–207
Language:
URL:
https://aclanthology.org/2021.konvens-1.18
DOI:
Bibkey:
Cite (ACL):
Aashish Agarwal and Torsten Zesch. 2021. Robustness of end-to-end Automatic Speech Recognition Models – A Case Study using Mozilla DeepSpeech. In Proceedings of the 17th Conference on Natural Language Processing (KONVENS 2021), pages 203–207, Düsseldorf, Germany. KONVENS 2021 Organizers.
Cite (Informal):
Robustness of end-to-end Automatic Speech Recognition Models – A Case Study using Mozilla DeepSpeech (Agarwal & Zesch, KONVENS 2021)
Copy Citation:
PDF:
https://aclanthology.org/2021.konvens-1.18.pdf