@inproceedings{mubarak-hassan-2021-arcorona,
title = "{A}r{C}orona: Analyzing {A}rabic Tweets in the Early Days of Coronavirus ({COVID}-19) Pandemic",
author = "Mubarak, Hamdy and
Hassan, Sabit",
editor = "Holderness, Eben and
Jimeno Yepes, Antonio and
Lavelli, Alberto and
Minard, Anne-Lyse and
Pustejovsky, James and
Rinaldi, Fabio",
booktitle = "Proceedings of the 12th International Workshop on Health Text Mining and Information Analysis",
month = apr,
year = "2021",
address = "online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.louhi-1.1",
pages = "1--6",
abstract = "Over the past few months, there were huge numbers of circulating tweets and discussions about Coronavirus (COVID-19) in the Arab region. It is important for policy makers and many people to identify types of shared tweets to better understand public behavior, topics of interest, requests from governments, sources of tweets, etc. It is also crucial to prevent spreading of rumors and misinformation about the virus or bad cures. To this end, we present the largest manually annotated dataset of Arabic tweets related to COVID-19. We describe annotation guidelines, analyze our dataset and build effective machine learning and transformer based models for classification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mubarak-hassan-2021-arcorona">
<titleInfo>
<title>ArCorona: Analyzing Arabic Tweets in the Early Days of Coronavirus (COVID-19) Pandemic</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hamdy</namePart>
<namePart type="family">Mubarak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabit</namePart>
<namePart type="family">Hassan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Health Text Mining and Information Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eben</namePart>
<namePart type="family">Holderness</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Jimeno Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Lavelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne-Lyse</namePart>
<namePart type="family">Minard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Rinaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Over the past few months, there were huge numbers of circulating tweets and discussions about Coronavirus (COVID-19) in the Arab region. It is important for policy makers and many people to identify types of shared tweets to better understand public behavior, topics of interest, requests from governments, sources of tweets, etc. It is also crucial to prevent spreading of rumors and misinformation about the virus or bad cures. To this end, we present the largest manually annotated dataset of Arabic tweets related to COVID-19. We describe annotation guidelines, analyze our dataset and build effective machine learning and transformer based models for classification.</abstract>
<identifier type="citekey">mubarak-hassan-2021-arcorona</identifier>
<location>
<url>https://aclanthology.org/2021.louhi-1.1</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>1</start>
<end>6</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ArCorona: Analyzing Arabic Tweets in the Early Days of Coronavirus (COVID-19) Pandemic
%A Mubarak, Hamdy
%A Hassan, Sabit
%Y Holderness, Eben
%Y Jimeno Yepes, Antonio
%Y Lavelli, Alberto
%Y Minard, Anne-Lyse
%Y Pustejovsky, James
%Y Rinaldi, Fabio
%S Proceedings of the 12th International Workshop on Health Text Mining and Information Analysis
%D 2021
%8 April
%I Association for Computational Linguistics
%C online
%F mubarak-hassan-2021-arcorona
%X Over the past few months, there were huge numbers of circulating tweets and discussions about Coronavirus (COVID-19) in the Arab region. It is important for policy makers and many people to identify types of shared tweets to better understand public behavior, topics of interest, requests from governments, sources of tweets, etc. It is also crucial to prevent spreading of rumors and misinformation about the virus or bad cures. To this end, we present the largest manually annotated dataset of Arabic tweets related to COVID-19. We describe annotation guidelines, analyze our dataset and build effective machine learning and transformer based models for classification.
%U https://aclanthology.org/2021.louhi-1.1
%P 1-6
Markdown (Informal)
[ArCorona: Analyzing Arabic Tweets in the Early Days of Coronavirus (COVID-19) Pandemic](https://aclanthology.org/2021.louhi-1.1) (Mubarak & Hassan, Louhi 2021)
ACL