@inproceedings{singh-etal-2021-multiple,
title = "Multiple Captions Embellished Multilingual Multi-Modal Neural Machine Translation",
author = "Singh, Salam Michael and
Sanayai Meetei, Loitongbam and
Singh, Thoudam Doren and
Bandyopadhyay, Sivaji",
editor = "Doren Singh, Thoudam and
Espa{\~n}a i Bonet, Cristina and
Bandyopadhyay, Sivaji and
van Genabith, Josef",
booktitle = "Proceedings of the First Workshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)",
month = sep,
year = "2021",
address = "Online (Virtual Mode)",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/2021.mmtlrl-1.2",
pages = "2--11",
abstract = "Neural machine translation based on bilingual text with limited training data suffers from lexical diversity, which lowers the rare word translation accuracy and reduces the generalizability of the translation system. In this work, we utilise the multiple captions from the Multi-30K dataset to increase the lexical diversity aided with the cross-lingual transfer of information among the languages in a multilingual setup. In this multilingual and multimodal setting, the inclusion of the visual features boosts the translation quality by a significant margin. Empirical study affirms that our proposed multimodal approach achieves substantial gain in terms of the automatic score and shows robustness in handling the rare word translation in the pretext of English to/from Hindi and Telugu translation tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singh-etal-2021-multiple">
<titleInfo>
<title>Multiple Captions Embellished Multilingual Multi-Modal Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="given">Michael</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loitongbam</namePart>
<namePart type="family">Sanayai Meetei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thoudam</namePart>
<namePart type="given">Doren</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sivaji</namePart>
<namePart type="family">Bandyopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thoudam</namePart>
<namePart type="family">Doren Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cristina</namePart>
<namePart type="family">España i Bonet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sivaji</namePart>
<namePart type="family">Bandyopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">van Genabith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Online (Virtual Mode)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural machine translation based on bilingual text with limited training data suffers from lexical diversity, which lowers the rare word translation accuracy and reduces the generalizability of the translation system. In this work, we utilise the multiple captions from the Multi-30K dataset to increase the lexical diversity aided with the cross-lingual transfer of information among the languages in a multilingual setup. In this multilingual and multimodal setting, the inclusion of the visual features boosts the translation quality by a significant margin. Empirical study affirms that our proposed multimodal approach achieves substantial gain in terms of the automatic score and shows robustness in handling the rare word translation in the pretext of English to/from Hindi and Telugu translation tasks.</abstract>
<identifier type="citekey">singh-etal-2021-multiple</identifier>
<location>
<url>https://aclanthology.org/2021.mmtlrl-1.2</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>2</start>
<end>11</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multiple Captions Embellished Multilingual Multi-Modal Neural Machine Translation
%A Singh, Salam Michael
%A Sanayai Meetei, Loitongbam
%A Singh, Thoudam Doren
%A Bandyopadhyay, Sivaji
%Y Doren Singh, Thoudam
%Y España i Bonet, Cristina
%Y Bandyopadhyay, Sivaji
%Y van Genabith, Josef
%S Proceedings of the First Workshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)
%D 2021
%8 September
%I INCOMA Ltd.
%C Online (Virtual Mode)
%F singh-etal-2021-multiple
%X Neural machine translation based on bilingual text with limited training data suffers from lexical diversity, which lowers the rare word translation accuracy and reduces the generalizability of the translation system. In this work, we utilise the multiple captions from the Multi-30K dataset to increase the lexical diversity aided with the cross-lingual transfer of information among the languages in a multilingual setup. In this multilingual and multimodal setting, the inclusion of the visual features boosts the translation quality by a significant margin. Empirical study affirms that our proposed multimodal approach achieves substantial gain in terms of the automatic score and shows robustness in handling the rare word translation in the pretext of English to/from Hindi and Telugu translation tasks.
%U https://aclanthology.org/2021.mmtlrl-1.2
%P 2-11
Markdown (Informal)
[Multiple Captions Embellished Multilingual Multi-Modal Neural Machine Translation](https://aclanthology.org/2021.mmtlrl-1.2) (Singh et al., MMTLRL 2021)
ACL