@inproceedings{rezaee-etal-2021-cross,
title = "On the Cross-lingual Transferability of Contextualized Sense Embeddings",
author = "Rezaee, Kiamehr and
Loureiro, Daniel and
Camacho-Collados, Jose and
Pilehvar, Mohammad Taher",
editor = "Ataman, Duygu and
Birch, Alexandra and
Conneau, Alexis and
Firat, Orhan and
Ruder, Sebastian and
Sahin, Gozde Gul",
booktitle = "Proceedings of the 1st Workshop on Multilingual Representation Learning",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.mrl-1.10",
doi = "10.18653/v1/2021.mrl-1.10",
pages = "107--115",
abstract = "In this paper we analyze the extent to which contextualized sense embeddings, i.e., sense embeddings that are computed based on contextualized word embeddings, are transferable across languages. To this end, we compiled a unified cross-lingual benchmark for Word Sense Disambiguation. We then propose two simple strategies to transfer sense-specific knowledge across languages and test them on the benchmark. Experimental results show that this contextualized knowledge can be effectively transferred to similar languages through pre-trained multilingual language models, to the extent that they can out-perform monolingual representations learnednfrom existing language-specific data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rezaee-etal-2021-cross">
<titleInfo>
<title>On the Cross-lingual Transferability of Contextualized Sense Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kiamehr</namePart>
<namePart type="family">Rezaee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Loureiro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="family">Camacho-Collados</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Multilingual Representation Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Duygu</namePart>
<namePart type="family">Ataman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Birch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Conneau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orhan</namePart>
<namePart type="family">Firat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Ruder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gozde</namePart>
<namePart type="given">Gul</namePart>
<namePart type="family">Sahin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we analyze the extent to which contextualized sense embeddings, i.e., sense embeddings that are computed based on contextualized word embeddings, are transferable across languages. To this end, we compiled a unified cross-lingual benchmark for Word Sense Disambiguation. We then propose two simple strategies to transfer sense-specific knowledge across languages and test them on the benchmark. Experimental results show that this contextualized knowledge can be effectively transferred to similar languages through pre-trained multilingual language models, to the extent that they can out-perform monolingual representations learnednfrom existing language-specific data.</abstract>
<identifier type="citekey">rezaee-etal-2021-cross</identifier>
<identifier type="doi">10.18653/v1/2021.mrl-1.10</identifier>
<location>
<url>https://aclanthology.org/2021.mrl-1.10</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>107</start>
<end>115</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Cross-lingual Transferability of Contextualized Sense Embeddings
%A Rezaee, Kiamehr
%A Loureiro, Daniel
%A Camacho-Collados, Jose
%A Pilehvar, Mohammad Taher
%Y Ataman, Duygu
%Y Birch, Alexandra
%Y Conneau, Alexis
%Y Firat, Orhan
%Y Ruder, Sebastian
%Y Sahin, Gozde Gul
%S Proceedings of the 1st Workshop on Multilingual Representation Learning
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F rezaee-etal-2021-cross
%X In this paper we analyze the extent to which contextualized sense embeddings, i.e., sense embeddings that are computed based on contextualized word embeddings, are transferable across languages. To this end, we compiled a unified cross-lingual benchmark for Word Sense Disambiguation. We then propose two simple strategies to transfer sense-specific knowledge across languages and test them on the benchmark. Experimental results show that this contextualized knowledge can be effectively transferred to similar languages through pre-trained multilingual language models, to the extent that they can out-perform monolingual representations learnednfrom existing language-specific data.
%R 10.18653/v1/2021.mrl-1.10
%U https://aclanthology.org/2021.mrl-1.10
%U https://doi.org/10.18653/v1/2021.mrl-1.10
%P 107-115
Markdown (Informal)
[On the Cross-lingual Transferability of Contextualized Sense Embeddings](https://aclanthology.org/2021.mrl-1.10) (Rezaee et al., MRL 2021)
ACL