@inproceedings{bassani-etal-2021-clustering,
title = "Clustering Monolingual Vocabularies to Improve Cross-Lingual Generalization",
author = "Bassani, Riccardo and
S{\o}gaard, Anders and
Deoskar, Tejaswini",
editor = "Ataman, Duygu and
Birch, Alexandra and
Conneau, Alexis and
Firat, Orhan and
Ruder, Sebastian and
Sahin, Gozde Gul",
booktitle = "Proceedings of the 1st Workshop on Multilingual Representation Learning",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.mrl-1.3",
doi = "10.18653/v1/2021.mrl-1.3",
pages = "32--40",
abstract = "Multilingual language models exhibit better performance for some languages than for others (Singh et al., 2019), and many languages do not seem to benefit from multilingual sharing at all, presumably as a result of poor multilingual segmentation (Pyysal o et al., 2020). This work explores the idea of learning multilingual language models based on clustering of monolingual segments. We show significant improvements over standard multilingual segmentation and training across nine languages on a question answering task, both in a small model regime and for a model of the size of BERT-base.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bassani-etal-2021-clustering">
<titleInfo>
<title>Clustering Monolingual Vocabularies to Improve Cross-Lingual Generalization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Riccardo</namePart>
<namePart type="family">Bassani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tejaswini</namePart>
<namePart type="family">Deoskar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Multilingual Representation Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Duygu</namePart>
<namePart type="family">Ataman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Birch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Conneau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orhan</namePart>
<namePart type="family">Firat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Ruder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gozde</namePart>
<namePart type="given">Gul</namePart>
<namePart type="family">Sahin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multilingual language models exhibit better performance for some languages than for others (Singh et al., 2019), and many languages do not seem to benefit from multilingual sharing at all, presumably as a result of poor multilingual segmentation (Pyysal o et al., 2020). This work explores the idea of learning multilingual language models based on clustering of monolingual segments. We show significant improvements over standard multilingual segmentation and training across nine languages on a question answering task, both in a small model regime and for a model of the size of BERT-base.</abstract>
<identifier type="citekey">bassani-etal-2021-clustering</identifier>
<identifier type="doi">10.18653/v1/2021.mrl-1.3</identifier>
<location>
<url>https://aclanthology.org/2021.mrl-1.3</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>32</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Clustering Monolingual Vocabularies to Improve Cross-Lingual Generalization
%A Bassani, Riccardo
%A Søgaard, Anders
%A Deoskar, Tejaswini
%Y Ataman, Duygu
%Y Birch, Alexandra
%Y Conneau, Alexis
%Y Firat, Orhan
%Y Ruder, Sebastian
%Y Sahin, Gozde Gul
%S Proceedings of the 1st Workshop on Multilingual Representation Learning
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F bassani-etal-2021-clustering
%X Multilingual language models exhibit better performance for some languages than for others (Singh et al., 2019), and many languages do not seem to benefit from multilingual sharing at all, presumably as a result of poor multilingual segmentation (Pyysal o et al., 2020). This work explores the idea of learning multilingual language models based on clustering of monolingual segments. We show significant improvements over standard multilingual segmentation and training across nine languages on a question answering task, both in a small model regime and for a model of the size of BERT-base.
%R 10.18653/v1/2021.mrl-1.3
%U https://aclanthology.org/2021.mrl-1.3
%U https://doi.org/10.18653/v1/2021.mrl-1.3
%P 32-40
Markdown (Informal)
[Clustering Monolingual Vocabularies to Improve Cross-Lingual Generalization](https://aclanthology.org/2021.mrl-1.3) (Bassani et al., MRL 2021)
ACL