@inproceedings{kell-etal-2021-take,
title = "What Would it Take to get Biomedical {QA} Systems into Practice?",
author = "Kell, Gregory and
Marshall, Iain and
Wallace, Byron and
Jaun, Andre",
editor = "Fisch, Adam and
Talmor, Alon and
Chen, Danqi and
Choi, Eunsol and
Seo, Minjoon and
Lewis, Patrick and
Jia, Robin and
Min, Sewon",
booktitle = "Proceedings of the 3rd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.mrqa-1.3",
doi = "10.18653/v1/2021.mrqa-1.3",
pages = "28--41",
abstract = "Medical question answering (QA) systems have the potential to answer clinicians{'} uncertainties about treatment and diagnosis on-demand, informed by the latest evidence. However, despite the significant progress in general QA made by the NLP community, medical QA systems are still not widely used in clinical environments. One likely reason for this is that clinicians may not readily trust QA system outputs, in part because transparency, trustworthiness, and provenance have not been key considerations in the design of such models. In this paper we discuss a set of criteria that, if met, we argue would likely increase the utility of biomedical QA systems, which may in turn lead to adoption of such systems in practice. We assess existing models, tasks, and datasets with respect to these criteria, highlighting shortcomings of previously proposed approaches and pointing toward what might be more usable QA systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kell-etal-2021-take">
<titleInfo>
<title>What Would it Take to get Biomedical QA Systems into Practice?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gregory</namePart>
<namePart type="family">Kell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iain</namePart>
<namePart type="family">Marshall</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Byron</namePart>
<namePart type="family">Wallace</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Jaun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Machine Reading for Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Fisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alon</namePart>
<namePart type="family">Talmor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danqi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eunsol</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minjoon</namePart>
<namePart type="family">Seo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Lewis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robin</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sewon</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Medical question answering (QA) systems have the potential to answer clinicians’ uncertainties about treatment and diagnosis on-demand, informed by the latest evidence. However, despite the significant progress in general QA made by the NLP community, medical QA systems are still not widely used in clinical environments. One likely reason for this is that clinicians may not readily trust QA system outputs, in part because transparency, trustworthiness, and provenance have not been key considerations in the design of such models. In this paper we discuss a set of criteria that, if met, we argue would likely increase the utility of biomedical QA systems, which may in turn lead to adoption of such systems in practice. We assess existing models, tasks, and datasets with respect to these criteria, highlighting shortcomings of previously proposed approaches and pointing toward what might be more usable QA systems.</abstract>
<identifier type="citekey">kell-etal-2021-take</identifier>
<identifier type="doi">10.18653/v1/2021.mrqa-1.3</identifier>
<location>
<url>https://aclanthology.org/2021.mrqa-1.3</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>28</start>
<end>41</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What Would it Take to get Biomedical QA Systems into Practice?
%A Kell, Gregory
%A Marshall, Iain
%A Wallace, Byron
%A Jaun, Andre
%Y Fisch, Adam
%Y Talmor, Alon
%Y Chen, Danqi
%Y Choi, Eunsol
%Y Seo, Minjoon
%Y Lewis, Patrick
%Y Jia, Robin
%Y Min, Sewon
%S Proceedings of the 3rd Workshop on Machine Reading for Question Answering
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F kell-etal-2021-take
%X Medical question answering (QA) systems have the potential to answer clinicians’ uncertainties about treatment and diagnosis on-demand, informed by the latest evidence. However, despite the significant progress in general QA made by the NLP community, medical QA systems are still not widely used in clinical environments. One likely reason for this is that clinicians may not readily trust QA system outputs, in part because transparency, trustworthiness, and provenance have not been key considerations in the design of such models. In this paper we discuss a set of criteria that, if met, we argue would likely increase the utility of biomedical QA systems, which may in turn lead to adoption of such systems in practice. We assess existing models, tasks, and datasets with respect to these criteria, highlighting shortcomings of previously proposed approaches and pointing toward what might be more usable QA systems.
%R 10.18653/v1/2021.mrqa-1.3
%U https://aclanthology.org/2021.mrqa-1.3
%U https://doi.org/10.18653/v1/2021.mrqa-1.3
%P 28-41
Markdown (Informal)
[What Would it Take to get Biomedical QA Systems into Practice?](https://aclanthology.org/2021.mrqa-1.3) (Kell et al., MRQA 2021)
ACL