@inproceedings{riess-etal-2021-comparison,
title = "A Comparison of Sentence-Weighting Techniques for {NMT}",
author = "Rie{\ss}, Simon and
Huck, Matthias and
Fraser, Alex",
editor = "Duh, Kevin and
Guzm{\'a}n, Francisco",
booktitle = "Proceedings of Machine Translation Summit XVIII: Research Track",
month = aug,
year = "2021",
address = "Virtual",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2021.mtsummit-research.15",
pages = "176--187",
abstract = "Sentence weighting is a simple and powerful domain adaptation technique. We carry out domain classification for computing sentence weights with 1) language model cross entropy difference 2) a convolutional neural network 3) a Recursive Neural Tensor Network. We compare these approaches with regard to domain classification accuracy and and study the posterior probability distributions. Then we carry out NMT experiments in the scenario where we have no in-domain parallel corpora and and only very limited in-domain monolingual corpora. Here and we use the domain classifier to reweight the sentences of our out-of-domain training corpus. This leads to improvements of up to 2.1 BLEU for German to English translation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="riess-etal-2021-comparison">
<titleInfo>
<title>A Comparison of Sentence-Weighting Techniques for NMT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Rieß</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Fraser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Machine Translation Summit XVIII: Research Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francisco</namePart>
<namePart type="family">Guzmán</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Machine Translation in the Americas</publisher>
<place>
<placeTerm type="text">Virtual</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentence weighting is a simple and powerful domain adaptation technique. We carry out domain classification for computing sentence weights with 1) language model cross entropy difference 2) a convolutional neural network 3) a Recursive Neural Tensor Network. We compare these approaches with regard to domain classification accuracy and and study the posterior probability distributions. Then we carry out NMT experiments in the scenario where we have no in-domain parallel corpora and and only very limited in-domain monolingual corpora. Here and we use the domain classifier to reweight the sentences of our out-of-domain training corpus. This leads to improvements of up to 2.1 BLEU for German to English translation.</abstract>
<identifier type="citekey">riess-etal-2021-comparison</identifier>
<location>
<url>https://aclanthology.org/2021.mtsummit-research.15</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>176</start>
<end>187</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Comparison of Sentence-Weighting Techniques for NMT
%A Rieß, Simon
%A Huck, Matthias
%A Fraser, Alex
%Y Duh, Kevin
%Y Guzmán, Francisco
%S Proceedings of Machine Translation Summit XVIII: Research Track
%D 2021
%8 August
%I Association for Machine Translation in the Americas
%C Virtual
%F riess-etal-2021-comparison
%X Sentence weighting is a simple and powerful domain adaptation technique. We carry out domain classification for computing sentence weights with 1) language model cross entropy difference 2) a convolutional neural network 3) a Recursive Neural Tensor Network. We compare these approaches with regard to domain classification accuracy and and study the posterior probability distributions. Then we carry out NMT experiments in the scenario where we have no in-domain parallel corpora and and only very limited in-domain monolingual corpora. Here and we use the domain classifier to reweight the sentences of our out-of-domain training corpus. This leads to improvements of up to 2.1 BLEU for German to English translation.
%U https://aclanthology.org/2021.mtsummit-research.15
%P 176-187
Markdown (Informal)
[A Comparison of Sentence-Weighting Techniques for NMT](https://aclanthology.org/2021.mtsummit-research.15) (Rieß et al., MTSummit 2021)
ACL