@inproceedings{moran-etal-2021-building,
title = "Building {MT} systems in low resourced languages for Public Sector users in {C}roatia, {I}celand, {I}reland, and {N}orway",
author = "Moran, R{\'o}is{\'\i}n and
Para Escart{\'\i}n, Carla and
Ramesh, Akshai and
Sheridan, P{\'a}raic and
Dunne, Jane and
Gaspari, Federico and
Castilho, Sheila and
Resende, Natalia and
Way, Andy",
editor = "Campbell, Janice and
Huyck, Ben and
Larocca, Stephen and
Marciano, Jay and
Savenkov, Konstantin and
Yanishevsky, Alex",
booktitle = "Proceedings of Machine Translation Summit XVIII: Users and Providers Track",
month = aug,
year = "2021",
address = "Virtual",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2021.mtsummit-up.25",
pages = "353--381",
abstract = "When developing Machine Translation engines, low resourced language pairs tend to be in a disadvantaged position: less available data means that developing robust MT models can be more challenging. The EU-funded PRINCIPLE project aims at overcoming this challenge for four low resourced European languages: Norwegian, Croatian, Irish and Icelandic. This presentation will give an overview of the project, with a focus on the set of Public Sector users and their use cases for which we have developed MT solutions. We will discuss the range of language resources that have been gathered through contributions from public sector collaborators, and present the extensive evaluations that have been undertaken, including significant user evaluation of MT systems across all of the public sector participants in each of the four countries involved.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moran-etal-2021-building">
<titleInfo>
<title>Building MT systems in low resourced languages for Public Sector users in Croatia, Iceland, Ireland, and Norway</title>
</titleInfo>
<name type="personal">
<namePart type="given">Róisín</namePart>
<namePart type="family">Moran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carla</namePart>
<namePart type="family">Para Escartín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akshai</namePart>
<namePart type="family">Ramesh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Páraic</namePart>
<namePart type="family">Sheridan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jane</namePart>
<namePart type="family">Dunne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Federico</namePart>
<namePart type="family">Gaspari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sheila</namePart>
<namePart type="family">Castilho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Resende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andy</namePart>
<namePart type="family">Way</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Machine Translation Summit XVIII: Users and Providers Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Janice</namePart>
<namePart type="family">Campbell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ben</namePart>
<namePart type="family">Huyck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="family">Larocca</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jay</namePart>
<namePart type="family">Marciano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Konstantin</namePart>
<namePart type="family">Savenkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Yanishevsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Machine Translation in the Americas</publisher>
<place>
<placeTerm type="text">Virtual</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>When developing Machine Translation engines, low resourced language pairs tend to be in a disadvantaged position: less available data means that developing robust MT models can be more challenging. The EU-funded PRINCIPLE project aims at overcoming this challenge for four low resourced European languages: Norwegian, Croatian, Irish and Icelandic. This presentation will give an overview of the project, with a focus on the set of Public Sector users and their use cases for which we have developed MT solutions. We will discuss the range of language resources that have been gathered through contributions from public sector collaborators, and present the extensive evaluations that have been undertaken, including significant user evaluation of MT systems across all of the public sector participants in each of the four countries involved.</abstract>
<identifier type="citekey">moran-etal-2021-building</identifier>
<location>
<url>https://aclanthology.org/2021.mtsummit-up.25</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>353</start>
<end>381</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Building MT systems in low resourced languages for Public Sector users in Croatia, Iceland, Ireland, and Norway
%A Moran, Róisín
%A Para Escartín, Carla
%A Ramesh, Akshai
%A Sheridan, Páraic
%A Dunne, Jane
%A Gaspari, Federico
%A Castilho, Sheila
%A Resende, Natalia
%A Way, Andy
%Y Campbell, Janice
%Y Huyck, Ben
%Y Larocca, Stephen
%Y Marciano, Jay
%Y Savenkov, Konstantin
%Y Yanishevsky, Alex
%S Proceedings of Machine Translation Summit XVIII: Users and Providers Track
%D 2021
%8 August
%I Association for Machine Translation in the Americas
%C Virtual
%F moran-etal-2021-building
%X When developing Machine Translation engines, low resourced language pairs tend to be in a disadvantaged position: less available data means that developing robust MT models can be more challenging. The EU-funded PRINCIPLE project aims at overcoming this challenge for four low resourced European languages: Norwegian, Croatian, Irish and Icelandic. This presentation will give an overview of the project, with a focus on the set of Public Sector users and their use cases for which we have developed MT solutions. We will discuss the range of language resources that have been gathered through contributions from public sector collaborators, and present the extensive evaluations that have been undertaken, including significant user evaluation of MT systems across all of the public sector participants in each of the four countries involved.
%U https://aclanthology.org/2021.mtsummit-up.25
%P 353-381
Markdown (Informal)
[Building MT systems in low resourced languages for Public Sector users in Croatia, Iceland, Ireland, and Norway](https://aclanthology.org/2021.mtsummit-up.25) (Moran et al., MTSummit 2021)
ACL
- Róisín Moran, Carla Para Escartín, Akshai Ramesh, Páraic Sheridan, Jane Dunne, Federico Gaspari, Sheila Castilho, Natalia Resende, and Andy Way. 2021. Building MT systems in low resourced languages for Public Sector users in Croatia, Iceland, Ireland, and Norway. In Proceedings of Machine Translation Summit XVIII: Users and Providers Track, pages 353–381, Virtual. Association for Machine Translation in the Americas.