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Abstract

Policy gradient algorithms have found wide
adoption in NLP, but have recently become
subject to criticism, doubting their suitability
for NMT. Choshen et al. (2020) identify multi-
ple weaknesses and suspect that their success
is determined by the shape of output distribu-
tions rather than the reward. In this paper,
we revisit these claims and study them under
a wider range of configurations. Our experi-
ments on in-domain and cross-domain adapta-
tion reveal the importance of exploration and
reward scaling, and provide empirical counter-
evidence to these claims.

1 Introduction

In neural sequence-to-sequence learning, in particu-
lar Neural Machine Translation (NMT), Reinforce-
ment Learning (RL) has gained attraction due to
the suitability of Policy Gradient (PG) methods for
the end-to-end training paradigm (Ranzato et al.,
2016; Li et al., 2016; Yu et al., 2017; Li et al., 2018;
Flachs et al., 2019; Sankar and Ravi, 2019). The
idea is to let the model explore the output space be-
yond the reference output that is used for standard
cross-entropy minimization, by reinforcing model
outputs according to their quality, effectively in-
creasing the likelihood of higher-quality samples.
The classic exploration-exploitation dilemma from
RL is addressed by sampling from a pretrained
model’s softmax distribution over output tokens,
such that the model entropy steers exploration.

For the application of NMT, it was firstly uti-
lized to bridge the mismatch between the optimiza-
tion for token-level likelihoods during training and
the corpus-level held-out set evaluations with non-
differentiable/decomposable metrics like BLEU
(Ranzato et al., 2016; Edunov et al., 2018), and
secondly to reduce exposure bias in autoregressive
sequence generators (Ranzato et al., 2016; Wang
and Sennrich, 2020). It has furthermore been identi-
fied as a promising tool to adapt pretrained models

to new domains or user preferences by replacing
reward functions with human feedback in human-
in-the-loop learning (Sokolov et al., 2016; Nguyen
et al., 2017).

Recently, the effectiveness of these methods
has been questioned: Choshen et al. (2020) iden-
tify multiple theoretical and empirical weaknesses,
leading to the suspicion that performance gains
with RL in NMT are not due to the reward signal.
The most surprising result is that the replacement
of a meaningful reward function (giving higher re-
wards to higher-quality translations) by a constant
reward (reinforcing all model samples equally)
yields similar improvements in BLEU. To explain
this counter-intuitive result, Choshen et al. (2020)
conclude that a phenomenon called the peakiness
effect must be responsible for performance gains
instead of the reward. This means that the most
likely tokens in the beginning gain probability mass
regardless of the rewards they receive during RL
training. If this hypothesis was true, then the per-
spectives for using methods of RL for encoding
real-world preferences into the model would be
quite dire, as models would essentially be stuck
with whatever they learned during supervised pre-
training and not reflect the feedback they obtain
later on.

However, the analysis by Choshen et al. (2020)
missed a few crucial aspects of RL that have led
to empirical success in previous works: First, vari-
ance reduction techniques such as the average re-
ward baseline were already proposed with the origi-
nal Policy Gradient by Williams (1992), and proved
effective for NMT (Kreutzer et al., 2017; Nguyen
et al., 2017). Second, the exploration-exploitation
trade-off can be controlled by modifying the sam-
pling function (Sharaf and Daumé III, 2017), which
in turn influences the peakiness.

We therefore revisit the previous findings with
NMT experiments differentiating model behav-
ior between in-domain and out-of-domain adap-
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tation, controlling exploration, reducing variance,
and isolating the effect of reward scaling. This
allows us to establish a more holistic view of
the previously identified weaknesses of RL. In
fact, our experiments reveal that improvements in
BLEU can not solely be explained by increased
peakiness, and that simple methods encouraging
stronger exploration can successfully move pre-
viously lower-ranked token into higher ranks.
We observe generally low empirical gains in in-
domain adaptation, which might explain the sur-
prising success of constant rewards in (Choshen
et al., 2020). However, we find that rewards and
their scaling do matter for domain adaptation.
Furthermore, our results corroborate the auspicious
findings of Wang and Sennrich (2020) that RL mit-
igates exposure bias. Our paper thus reinstates the
potential of RL for model adaptation in NMT, and
puts previous pessimistic findings into perspective.
The code for our experiments is publicly available.1

2 RL for NMT

The objective of RL in NMT is to maximize the ex-
pected reward for the model’s outputs with respect
to the parameters θ: arg maxθ Epθ(y|x)[∆(y, y′)].
where y′ denotes a reference translation, y is the
generated translation and ∆ is a metric (e.g. BLEU
(Papineni et al., 2002)), rewarding similarities to
the reference. Applying the log derivative trick, the
following gradient can be derived:

∇θ = Epθ(y|x)[∆(y, y′)∇θ log pθ(y | x)]. (1)

The benefit of Eq. 1 is that it does not require differ-
entiation of ∆ which allows for direct optimization
of the BLEU score or human feedback.2

2.1 Policy Gradient
However, computing the gradient requires the sum-
mation over all y ∈ Vmtrg, which is computationally
infeasible for large sequence lengths m and vo-
cabulary sizes Vtrg as they are common in NMT.
Therefore, Eq. 1 is usually approximated through
Monte Carlo sampling (Williams, 1992) resulting
in unbiased estimators of the full gradient.

We draw one sample from the multinomial dis-
tribution defined by the model’s softmax to approx-
imate Eq. 1 (Ranzato et al., 2016; Kreutzer et al.,

1https://github.com/samuki/
reinforce-joey

2Rewards may be obtained without reference translations
y′, hence ∆(y) can replace ∆(y, y′) in the following equa-
tions.

2017; Choshen et al., 2020), which results in the
following update rule with learning rate α:

uk = ∇θ log pθ(y | x)∆(y, y′) (2)

θt+1 = θt + αuk (3)

2.2 Softmax Temperature
The temperature τ of the softmax distribution
exp(yi/τ)/

∑
j exp(yj/τ) can be used to control

the amount of exploration during learning. Setting
0 < τ < 1 results in less diverse samples while
setting τ > 1 increases the diversity and also the
entropy of the distribution. Lowering the tempera-
ture (i.e. making the distribution peakier) may be
used to make policies more deterministic towards
the end of training (Sutton and Barto, 1998; Rose,
1998; Sokolov et al., 2017), while we aim to reduce
peakiness by increasing the temperature.

2.3 Modified Rewards
Variance reduction techniques were already sug-
gested by Williams (1992) and found to improve
generalization for NMT (Kreutzer et al., 2017).
The simplest option is the baseline reward, which
in practice is realized by subtracting a running av-
erage of historic rewards from the current reward
∆ in Eq. 2. It represents an expected reward, so
that model outputs get more strongly reinforced or
penalized if they diverge from it.

In addition to variance reduction, subtracting
baseline rewards also change the scale of rewards
(e.g. ∆ ∈ [0, 1] for BLEU becomes ∆ ∈
[−0.5, 0.5]), allowing updates towards or away
from samples by switching the sign of uk (Eq. 2).
The same range of rewards can be obtained by re-
scaling them, e.g., to ∆(y,y′)−min

max−min − 0.5 with the
minimum (min) and maximum (max) ∆ within
each batch.

2.4 Minimum Risk Training
Minimum Risk Training (MRT) (Shen et al., 2016)
aims to minimize the empirical risk of task loss
over a larger set of n = |S|, n > 1 output samples
S(x) ⊂ Y (x):

arg min
θ

∑
(x,y′)∈D

∑
y∈S(x)

Qθ,α(y | x)[−∆(y, y′)],

Qθ,α(y | x(s)) =
pθ(y | x)α∑

y′′∈S(x) pθ(y
′′ | x)α

.

As pointed out by Choshen et al. (2020), MRT
learns with biased stochastic estimates of the RL

https://github.com/samuki/reinforce-joey
https://github.com/samuki/reinforce-joey
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Model ∆ptop10 ∆pmode BLEU (k = 1) BLEU (k = 5) BLEU (k = 50)

Pretraining (IWSLT14) 0 0 33.49 34.12 33.88

PG (n = 1) 11.46 24.82 33.84± 0.05 34.24± 0.04 34.16± 0.13
PG + scaled 11.36 24.42 33.91± 0.14 34.30± 0.10 34.19± 0.11
PG + average bl 12.54 27.84 34.20± 0.04 34.40± 0.03 34.30± 0.04
PG + τ = 1.2 6.08 16.91 33.88± 0.04 34.15± 0.02 34.11± 0.01
PG + τ = 0.8 14.29 29.74 33.80± 0.03 34.26± 0.11 34.14± 0.10
PG + constant 1.42 1.02 33.53± 0.04 34.13± 0.01 33.91± 0.03

PG + average bl + τ = 1.05 12.09 27.51 34.37± 0.06 34.51± 0.11 34.46± 0.09
PG + average bl + τ = 0.95 13.36 29.83 34.28± 0.10 34.51± 0.06 34.41± 0.09

MRT (n = 5) 12.93 32.85 34.52± 0.06 34.68± 0.05 34.63± 0.05

Table 1: In-domain adaptation: Peakiness indicators (%), and IWSLT14 test set results for beam size k.

objective due to the renormalization of model
scores, but that has not hindered its empirical suc-
cess (Shen et al., 2016; Edunov et al., 2018; Wi-
eting et al., 2019; Wang and Sennrich, 2020). In-
terestingly, the resulting gradient update includes
a renormalization of sampled rewards, yielding a
similar effect to the baseline reward (Shen et al.,
2016). It also allows for more exploration thanks
to learning from multiple samples per input, but it
is therefore less attractive for human-in-the-loop
learning and efficient training.

2.5 Exposure Bias

The exposure bias in NMT arises from the model
only being exposed to the ground truth during train-
ing, and receiving its own previous predictions dur-
ing inference—while it might be overly reliant on
perfect context, which in turn lets errors accumu-
late rapidly over long sequences (Ranzato et al.,
2016). Wang and Sennrich (2020) hypothesize that
exposure bias increases the prevalence of halluci-
nations in domain adaptation and causes the beam
search curse (Koehn and Knowles, 2017; Yang
et al., 2018), which describes the problem that the
model’s performance worsens with large beams.
Wang and Sennrich (2020) find that MRT with mul-
tiple samples can mitigate this problem thanks to
being exposed to model predictions during training.
We will extend this finding to other PG variants
with single samples.

3 Experiments

We implement PG and MRT (without enforcing
gold tokens in S; n = 5) in Joey NMT (Kreutzer
et al., 2019) for Transformers (Vaswani et al., 2017).

We simulate rewards for training samples from
IWSLT14 de-en with sacreBLEU (Post, 2018), and
test on IWSLT14 held-out sets. We consider two
different domains for pretraining, WMT15 and
IWSLT14. This allows us to distinguish the effects
of RL in in-domain learning vs domain adapta-
tion scenarios. RL experiments are repeated three
times and we report mean and standard deviation.
Remaining experimental details can be found in
the Appendix. The goal is not to find the best
model in a supervised domain adaptation setup
(“Fine-tuning” in Table 2), but to investigate if/how
scalar rewards expressing translation preferences
can guide learning, mimicking a human-in-the-loop
learning scenario.

3.1 Peakiness

Choshen et al. (2020) suspect that PG improve-
ments are due to an increase in peakiness. In-
creased peakiness is indicated by a disproportionate
rise of ptop10 and pmode, the average token proba-
bility of the 10 most likely tokens, and the mode,
respectively. To test the influence of peakiness on
performance, we deliberately increase and decrease
the peakiness of the output distribution by adjust-
ing the parameter τ . In Tables 1 and 2 we can
see that all PG variants generally increase peaki-
ness (ptop10 and pmode), but that those with higher
temperature τ > 1 show a lower increase. Com-
paring the peakiness with the BLEU scores, we
find that BLEU gains are not tied to increasing
peakiness in in-domain and cross-domain adapta-
tion experiments. This is exemplified by reward
scaling (“PG+scaled”), which improves the BLEU
but does not lead to an increase in peakiness com-
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pared to PG.These results show that improvements
in BLEU can not just be explained by the peakiness
effect, contradicting the hypothesis of Choshen
et al. (2020). However, in cross-domain adaptation
exploration plays a major role: Since the model
has lower entropy on the new data, reducing ex-
ploration (lower τ ) helps to improve translation
quality.

3.2 Upwards Mobility

One disadvantage of high peakiness is that previ-
ously likely tokens accumulate even more probabil-
ity mass during RL. Choshen et al. (2020) therefore
fear that it might be close to impossible to transport
lower-ranking tokens to higher ranks with RL. We
test this hypothesis under different exploration set-
tings by counting the number of gold tokens in each
rank of the output distribution. That number is di-
vided by the number of all gold tokens to obtain the
probability of gold tokens appearing in each rank.
We then compare the probability before and after
RL. Fig. 1 illustrates that training with an increased
temperature pushes more gold tokens out of the
lowest rank. The baseline reward has a beneficial
effect to that aim, since it allows down-weighing
samples as well. This shows that upwards mobility
is feasible and not a principled problem for PG.

3.3 Meaningful Rewards

Choshen et al. (2020) observe an increase in peak-
iness when all rewards are set to 1, and BLEU
improvements even comparable to BLEU rewards.
While our results with a constant reward of 1
(“PG+constant”) also show an increase in peak-
iness for cross-domain adaptation (Table 2), we do
not observe any improvements over the pretrained
model, which contradicts the results of Choshen
et al. (2020). Similarly, domain adaptation via
self-training does not show improvements over the
baseline, which confirms that gains do not come
from being exposed to new inputs alone. While the
effects in-domain are generally weak with a max-
imum gain of 0.5 BLEU over the baseline (with
beam size k = 5, Table 1), the results for domain
adaptation (Table 2) show a clear advantage of us-
ing informative rewards with up to +4.7 BLEU
for PG and +6.7 BLEU for MRT (with beam size
k = 5). We conclude that rewards do matter for
PG for NMT.

Figure 1: Change in probability for gold tokens to be-
long to each rank before and after RL on in-domain
data.

3.4 Allowing Negative Rewards
As described in Section 2.3, scaling the re-
ward (“PG+scaled”), subtracting a baseline
(“PG+average bl”), or normalizing it over multi-
ple samples for MRT, introduces negative rewards,
which enables updates away from sampled outputs.
BLEU under domain shift (Table 2) shows a signifi-
cant improvement when allowing negative rewards.
The scaled reward increases the score by almost
1 BLEU, the average reward baseline by almost 2
BLEU and MRT leads to a gain of about 4.5 BLEU
over plain PG.

3.5 The Beam Curse
The results show that improvements of RL over the
baseline are higher with lower beam sizes, since RL
reduces the need for exploration (through search)
during inference thanks to the exploration during
training. These findings are in line with (Bahdanau
et al., 2017). For RL models, BLEU reductions
caused by larger beams are weaker than for the
baseline model in both settings, which confirms
that PG methods are effective at mitigating the
beam search problem, and according to Wang and
Sennrich (2020) might also reduce hallucinations.

3.6 Discussion
Despite the promising empirical gains over a pre-
trained baseline, all above methods would fail if
trained from scratch, as there are no non-zero-
reward translation outputs sampled when starting
from a random policy. Empirical improvements
over a strong pretrained model vanish when there
is little to learn from the new feedback, e.g. when
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Model ∆ptop10 ∆pmode BLEU (k = 1) BLEU (k = 5) BLEU (k = 50)

Pretraining (WMT15) 0 0 19.74 20.35 20.10

Self-training (IWSLT14) 46.87 99.15 19.74± 0.00 20.35± 0.00 20.10± 0.00
Fine-Tuning (IWSLT14) 16.71 25.29 28.25± 0.11 29.38± 0.09 29.48± 0.05

PG (n = 1) 44.10 88.60 22.34± 0.73 22.62± 0.56 22.60± 0.51
PG + scaled 43.46 87.83 23.23± 0.12 23.50± 0.15 23.52± 0.19
PG + average bl 44.91 94.65 24.31± 0.41 24.53± 0.26 24.56± 0.22
PG + τ = 1.2 39.05 78.93 21.26± 0.20 21.58± 0.21 21.60± 0.28
PG + τ = 0.8 46.84 94.72 23.29± 0.24 23.71± 0.27 23.73± 0.33
PG + constant 48.50 115.31 19.74± 0.00 20.35± 0.00 20.10± 0.00

PG + average bl + τ = 1.05 44.44 93.53 24.18± 0.09 24.53± 0.09 24.60± 0.11
PG + average bl + τ = 0.95 45.41 95.32 24.76± 0.37 25.02± 0.24 25.01± 0.20

MRT (n = 5) 44.63 103.68 26.98± 0.10 27.08± 0.09 27.09± 0.10

Table 2: Cross-domain adaptation: Peakiness indicators (%), and IWSLT14 test set results for beam size k.

it is given on the same data which the model was
already trained on, as we have shown above, relat-
ing to the “failure” cases in (Choshen et al., 2020).
RL methods for MT can be effective at adapting
a model to new custom preferences if these pref-
erences can be reflected in an appropriate reward
function, which we simulated with in-domain data.
In Table 2, we observed this effect and gained sev-
eral BLEU points without revealing reference trans-
lations to the model. Being exposed to new sources
alone (without rewards) is not sufficient to obtain
improvements, which we tested by self-training
(Table 2). Ultimately, the potential to improve MT
models with RL methods lies in situations where
there are no reference translations but reward sig-
nals, and models can be pretrained on existing data.

4 Conclusion

We provided empirical counter-evidence for some
of the claimed weaknesses of RL in NMT by un-
tying BLEU gains from peakiness, showcasing
the upwards mobility of low-ranking tokens, and
re-confirming the importance of reward functions.
The affirmed gains of PG variants in adaptation sce-
narios and their responsiveness to reward functions,
combined with exposure bias repair and avoidance
of the beam curse, rekindle the potential to utilize
them for adapting models to human preferences.
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A Data

Domain Train Dev Test

WMT15 3 898 886 8496 2902
IWSLT14 159 392 7245 6750

Table 3: Training, dev, and test sizes for WMT15 and
IWSLT14 de-en data in number of sentences.

Table 3 lists the sizes of data split for the par-
allel datasets from WMT15 (Bojar et al., 2015)
and IWSLT143 used in the experiments. The two
datasets are preprocessed using scripts from the
Moses toolkit.4 The preprocessing pipeline con-
tains the following steps:

• Tokenization with tokenizer.perl

• Lowercasing with lowercase.perl

• Filtering using clean-corpus-n.perl.
Sentences with more than 80 words are re-
moved from the dataset

Additionally, we applied Byte-Pair-Encoding (Sen-
nrich et al., 2016) using subword-nmt5 to create
subword units.

B Model Configurations

Table 8 contains the hyperparameters as Joey NMT
configurations for the pretrained models, Table 9
the modified hyperparameters for PG, and Table 10
the modified hyperparameters for MRT. Random
seeds for the three runs were set to 42, 8 and 64.

C Sample Efficiency

Fig. 2 shows that both MRT and Policy Gradient
need a comparable amount of steps (with a batch
size of 256 tokens) to reach their optimum. How-
ever, the performance of MRT is more stable over
the course of training, while Policy Gradient shows
higher variance. MRT learns from n = 5 outputs
and rewards per step (compared to Policy Gradient
with n = 1), which stabilizes the updates.

3https://sites.google.com/site/
iwsltevaluation2014/mt-track

4https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

5https://github.com/rsennrich/
subword-nmt

Figure 2: Dev BLEU/steps for cross-domain.

Model Dev BLEU Test BLEU

Pretraining 34.26 34.12

PG 34.37± 0.12 34.24± 0.04
PG + average bl 34.75± 0.06 34.40± 0.03
PG + τ = 1.2 34.46± 0.10 34.15± 0.02
PG + τ = 0.8 34.47± 0.12 34.26± 0.11
PG + constant 34.26± 0 34.13± 0.01
PG + scaled 34.55± 0.10 34.30± 0.10

Table 4: PG variants in-domain adaptation (IWSLT14),
beam size=5.

D Additional Considerations

Learned Baseline A reward baseline can also be
learned by formulating it as a regression problem,
but like Wu et al. (2018) we found no empirical
gains, thus excluded it from the experiments re-
ported in this paper.

Scaling Rewards We found that selecting max
andmin over all previous rewards led to deteriorat-
ing BLEU scores. This is why we recompute them
for each batch.

Gold Tokens in MRT Shen et al. (2016) add
the gold sequence to the sample space. However,
Edunov et al. (2018) find that this destabilizes train-
ing, so Choshen et al. (2020) and Wang and Sen-
nrich (2020) choose to omit it, and so do we.

E Development Results

Tables 4 and 5 report results on the development set
that were used for tuning the models. They show
stable results across different held-out sets.

F Absolute Peakiness

Tables 7 and 6 contain the absolute values for
the change peakiness that were used to compute
percentages for the main paper results.

https://sites.google.com/site/iwsltevaluation2014/mt-track
https://sites.google.com/site/iwsltevaluation2014/mt-track
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
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Model Dev BLEU Test BLEU

Pretraining 18.86 20.35

PG 21.63± 0.39 22.62± 0.56
PG + average bl 23.31± 0.32 24.53± 0.26
PG + τ = 1.2 20.45± 0.18 21.58± 0.21
PG + τ = 0.8 22.16± 0.08 23.71± 0.27
PG + constant 18.86± 0 20.35± 0
PG + scaled 22.40± 0.10 23.50± 0.15

Table 5: PG variants cross-domain adaptation
(WMT15 to IWSLT14), beam size=5

Model ∆ptop10 ∆pmode ∆pgold

PG
0.294±
0.001

0.400±
0.001

0.095±
0.002

PG + scaled
0.290±
0.002

0.397±
0.006

0.098±
0.001

PG + average bl
0.300±
0.001

0.428±
0.001

0.103±
0.002

PG + τ = 1.2
0.260±
0.003

0.357±
0.006

0.082±
0.001

PG + τ = 0.8
0.312±
0.001

0.428±
0.002

0.102±
0.001

PG + constant
0.323±
0.001

0.521±
0.002

−0.123±
0.004

MRT
0.307±
0.002

0.482±
0.004

0.126±
0.004

Table 6: Absolute changes in peakiness after cross-
domain adaptation (WMT15 to IWSLT14).

Model ∆ptop10 ∆pmode ∆pgold

PG
0.099±
0.002

0.199±
0.003

0.076±
0.001

PG + scaled
0.097±
0.002

0.162±
0.005

0.074±
0.002

PG + average bl
0.108±
0.002

0.185±
0.006

0.083±
0.002

PG + τ = 1.2
0.052±
0.002

0.112±
0.004

0.060±
0.001

PG + τ = 0.8
0.123±
0.001

0.198±
0.003

0.083±
0.003

PG + constant
0.012±
0.007

0.017±
0.007

0.003±
0.001

MRT
0.112±
0.003

0.217±
0.004

0.090±
0.004

Table 7: Absolute changes in peakiness for in-domain
(IWSLT14) adaptation.

Model IWSLT14 WMT15

Parameter Setting Setting

initializer "xavier" "xavier"
embed initializer "xavier" "xavier"
embed init gain 1.0 1.0
init gain 1.0 1.0
bias initializer "zeros" "zeros"
tied embeddings True True
tied softmax True True
encoder type Transformer Transfomer
encoder embeddings dim 256 128
encoder hidden size 256 128
encoder dropout 0.3 0.3
encoder num layers 6 6
encoder num heads 4 4
encoder ff_size 1024 512

decoder type Transformer Transformer
decoder embeddings dim 256 128
decoder hidden size 256 128
decoder dropout 0.3 0.3
decoder num layers 6 6
decoder num heads 4 4
decoder ff_size 1024 512

optimizer "adam" "adam"
normalization "tokens" "tokens"
adam_betas [0.9, 0.999] [0.9, 0.999]
scheduling "plateau" "plateau"
patience 5 5
decrease_factor 0.7 0.7
loss "crossentropy" "crossentropy"
learning rate 0.0003 0.0003
learning rate_min 0.00000002 0.00000002
weight decay 0.0 0.0
label smoothing 0.1 0.1
batch size 2048 4096
batch type "token" "token"
epochs 100 100

Table 8: Pretraining model parameters

Parameter In-domain Cross-domain

learning rate 0.00001 0.0001
batch size 128 256

Table 9: Policy Gradient parameters

Parameter In-domain Cross-domain

learning rate 0.00001 0.0001
batch size 32 64
batch multiplier 4 4
eval batch size 128 128
samples 5 5
alpha 0.005 0.005

Table 10: MRT parameters


