@inproceedings{feng-etal-2021-target,
title = "Target-specified Sequence Labeling with Multi-head Self-attention for Target-oriented Opinion Words Extraction",
author = "Feng, Yuhao and
Rao, Yanghui and
Tang, Yuyao and
Wang, Ninghua and
Liu, He",
editor = "Toutanova, Kristina and
Rumshisky, Anna and
Zettlemoyer, Luke and
Hakkani-Tur, Dilek and
Beltagy, Iz and
Bethard, Steven and
Cotterell, Ryan and
Chakraborty, Tanmoy and
Zhou, Yichao",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.145",
doi = "10.18653/v1/2021.naacl-main.145",
pages = "1805--1815",
abstract = "Opinion target extraction and opinion term extraction are two fundamental tasks in Aspect Based Sentiment Analysis (ABSA). Many recent works on ABSA focus on Target-oriented Opinion Words (or Terms) Extraction (TOWE), which aims at extracting the corresponding opinion words for a given opinion target. TOWE can be further applied to Aspect-Opinion Pair Extraction (AOPE) which aims at extracting aspects (i.e., opinion targets) and opinion terms in pairs. In this paper, we propose Target-Specified sequence labeling with Multi-head Self-Attention (TSMSA) for TOWE, in which any pre-trained language model with multi-head self-attention can be integrated conveniently. As a case study, we also develop a Multi-Task structure named MT-TSMSA for AOPE by combining our TSMSA with an aspect and opinion term extraction module. Experimental results indicate that TSMSA outperforms the benchmark methods on TOWE significantly; meanwhile, the performance of MT-TSMSA is similar or even better than state-of-the-art AOPE baseline models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="feng-etal-2021-target">
<titleInfo>
<title>Target-specified Sequence Labeling with Multi-head Self-attention for Target-oriented Opinion Words Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuhao</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanghui</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuyao</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ninghua</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristina</namePart>
<namePart type="family">Toutanova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iz</namePart>
<namePart type="family">Beltagy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Opinion target extraction and opinion term extraction are two fundamental tasks in Aspect Based Sentiment Analysis (ABSA). Many recent works on ABSA focus on Target-oriented Opinion Words (or Terms) Extraction (TOWE), which aims at extracting the corresponding opinion words for a given opinion target. TOWE can be further applied to Aspect-Opinion Pair Extraction (AOPE) which aims at extracting aspects (i.e., opinion targets) and opinion terms in pairs. In this paper, we propose Target-Specified sequence labeling with Multi-head Self-Attention (TSMSA) for TOWE, in which any pre-trained language model with multi-head self-attention can be integrated conveniently. As a case study, we also develop a Multi-Task structure named MT-TSMSA for AOPE by combining our TSMSA with an aspect and opinion term extraction module. Experimental results indicate that TSMSA outperforms the benchmark methods on TOWE significantly; meanwhile, the performance of MT-TSMSA is similar or even better than state-of-the-art AOPE baseline models.</abstract>
<identifier type="citekey">feng-etal-2021-target</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-main.145</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-main.145</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>1805</start>
<end>1815</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Target-specified Sequence Labeling with Multi-head Self-attention for Target-oriented Opinion Words Extraction
%A Feng, Yuhao
%A Rao, Yanghui
%A Tang, Yuyao
%A Wang, Ninghua
%A Liu, He
%Y Toutanova, Kristina
%Y Rumshisky, Anna
%Y Zettlemoyer, Luke
%Y Hakkani-Tur, Dilek
%Y Beltagy, Iz
%Y Bethard, Steven
%Y Cotterell, Ryan
%Y Chakraborty, Tanmoy
%Y Zhou, Yichao
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F feng-etal-2021-target
%X Opinion target extraction and opinion term extraction are two fundamental tasks in Aspect Based Sentiment Analysis (ABSA). Many recent works on ABSA focus on Target-oriented Opinion Words (or Terms) Extraction (TOWE), which aims at extracting the corresponding opinion words for a given opinion target. TOWE can be further applied to Aspect-Opinion Pair Extraction (AOPE) which aims at extracting aspects (i.e., opinion targets) and opinion terms in pairs. In this paper, we propose Target-Specified sequence labeling with Multi-head Self-Attention (TSMSA) for TOWE, in which any pre-trained language model with multi-head self-attention can be integrated conveniently. As a case study, we also develop a Multi-Task structure named MT-TSMSA for AOPE by combining our TSMSA with an aspect and opinion term extraction module. Experimental results indicate that TSMSA outperforms the benchmark methods on TOWE significantly; meanwhile, the performance of MT-TSMSA is similar or even better than state-of-the-art AOPE baseline models.
%R 10.18653/v1/2021.naacl-main.145
%U https://aclanthology.org/2021.naacl-main.145
%U https://doi.org/10.18653/v1/2021.naacl-main.145
%P 1805-1815
Markdown (Informal)
[Target-specified Sequence Labeling with Multi-head Self-attention for Target-oriented Opinion Words Extraction](https://aclanthology.org/2021.naacl-main.145) (Feng et al., NAACL 2021)
ACL