ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction

Jiahao Bu, Lei Ren, Shuang Zheng, Yang Yang, Jingang Wang, Fuzheng Zhang, Wei Wu


Abstract
Sentiment analysis has attracted increasing attention in e-commerce. The sentiment polarities underlying user reviews are of great value for business intelligence. Aspect category sentiment analysis (ACSA) and review rating prediction (RP) are two essential tasks to detect the fine-to-coarse sentiment polarities. ACSA and RP are highly correlated and usually employed jointly in real-world e-commerce scenarios. While most public datasets are constructed for ACSA and RP separately, which may limit the further exploitation of both tasks. To address the problem and advance related researches, we present a large-scale Chinese restaurant review dataset ASAP including 46, 730 genuine reviews from a leading online-to-offline (O2O) e-commerce platform in China. Besides a 5-star scale rating, each review is manually annotated according to its sentiment polarities towards 18 pre-defined aspect categories. We hope the release of the dataset could shed some light on the field of sentiment analysis. Moreover, we propose an intuitive yet effective joint model for ACSA and RP. Experimental results demonstrate that the joint model outperforms state-of-the-art baselines on both tasks.
Anthology ID:
2021.naacl-main.167
Volume:
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Month:
June
Year:
2021
Address:
Online
Editors:
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, Yichao Zhou
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
2069–2079
Language:
URL:
https://aclanthology.org/2021.naacl-main.167
DOI:
10.18653/v1/2021.naacl-main.167
Bibkey:
Cite (ACL):
Jiahao Bu, Lei Ren, Shuang Zheng, Yang Yang, Jingang Wang, Fuzheng Zhang, and Wei Wu. 2021. ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2069–2079, Online. Association for Computational Linguistics.
Cite (Informal):
ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction (Bu et al., NAACL 2021)
Copy Citation:
PDF:
https://aclanthology.org/2021.naacl-main.167.pdf
Optional supplementary data:
 2021.naacl-main.167.OptionalSupplementaryData.zip
Video:
 https://aclanthology.org/2021.naacl-main.167.mp4
Code
 Meituan-Dianping/asap