@inproceedings{ruprecht-morbitz-2021-supertagging,
title = "Supertagging-based Parsing with Linear Context-free Rewriting Systems",
author = {Ruprecht, Thomas and
M{\"o}rbitz, Richard},
editor = "Toutanova, Kristina and
Rumshisky, Anna and
Zettlemoyer, Luke and
Hakkani-Tur, Dilek and
Beltagy, Iz and
Bethard, Steven and
Cotterell, Ryan and
Chakraborty, Tanmoy and
Zhou, Yichao",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.232/",
doi = "10.18653/v1/2021.naacl-main.232",
pages = "2923--2935",
abstract = "We present the first supertagging-based parser for linear context-free rewriting systems (LCFRS). It utilizes neural classifiers and outperforms previous LCFRS-based parsers in both accuracy and parsing speed by a wide margin. Our results keep up with the best (general) discontinuous parsers, particularly the scores for discontinuous constituents establish a new state of the art. The heart of our approach is an efficient lexicalization procedure which induces a lexical LCFRS from any discontinuous treebank. We describe a modification to usual chart-based LCFRS parsing that accounts for supertagging and introduce a procedure that transforms lexical LCFRS derivations into equivalent parse trees of the original treebank. Our approach is evaluated on the English Discontinuous Penn Treebank and the German treebanks Negra and Tiger."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ruprecht-morbitz-2021-supertagging">
<titleInfo>
<title>Supertagging-based Parsing with Linear Context-free Rewriting Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Ruprecht</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Mörbitz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristina</namePart>
<namePart type="family">Toutanova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iz</namePart>
<namePart type="family">Beltagy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the first supertagging-based parser for linear context-free rewriting systems (LCFRS). It utilizes neural classifiers and outperforms previous LCFRS-based parsers in both accuracy and parsing speed by a wide margin. Our results keep up with the best (general) discontinuous parsers, particularly the scores for discontinuous constituents establish a new state of the art. The heart of our approach is an efficient lexicalization procedure which induces a lexical LCFRS from any discontinuous treebank. We describe a modification to usual chart-based LCFRS parsing that accounts for supertagging and introduce a procedure that transforms lexical LCFRS derivations into equivalent parse trees of the original treebank. Our approach is evaluated on the English Discontinuous Penn Treebank and the German treebanks Negra and Tiger.</abstract>
<identifier type="citekey">ruprecht-morbitz-2021-supertagging</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-main.232</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-main.232/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>2923</start>
<end>2935</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Supertagging-based Parsing with Linear Context-free Rewriting Systems
%A Ruprecht, Thomas
%A Mörbitz, Richard
%Y Toutanova, Kristina
%Y Rumshisky, Anna
%Y Zettlemoyer, Luke
%Y Hakkani-Tur, Dilek
%Y Beltagy, Iz
%Y Bethard, Steven
%Y Cotterell, Ryan
%Y Chakraborty, Tanmoy
%Y Zhou, Yichao
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F ruprecht-morbitz-2021-supertagging
%X We present the first supertagging-based parser for linear context-free rewriting systems (LCFRS). It utilizes neural classifiers and outperforms previous LCFRS-based parsers in both accuracy and parsing speed by a wide margin. Our results keep up with the best (general) discontinuous parsers, particularly the scores for discontinuous constituents establish a new state of the art. The heart of our approach is an efficient lexicalization procedure which induces a lexical LCFRS from any discontinuous treebank. We describe a modification to usual chart-based LCFRS parsing that accounts for supertagging and introduce a procedure that transforms lexical LCFRS derivations into equivalent parse trees of the original treebank. Our approach is evaluated on the English Discontinuous Penn Treebank and the German treebanks Negra and Tiger.
%R 10.18653/v1/2021.naacl-main.232
%U https://aclanthology.org/2021.naacl-main.232/
%U https://doi.org/10.18653/v1/2021.naacl-main.232
%P 2923-2935
Markdown (Informal)
[Supertagging-based Parsing with Linear Context-free Rewriting Systems](https://aclanthology.org/2021.naacl-main.232/) (Ruprecht & Mörbitz, NAACL 2021)
ACL