@inproceedings{schiller-etal-2021-aspect,
title = "Aspect-Controlled Neural Argument Generation",
author = "Schiller, Benjamin and
Daxenberger, Johannes and
Gurevych, Iryna",
editor = "Toutanova, Kristina and
Rumshisky, Anna and
Zettlemoyer, Luke and
Hakkani-Tur, Dilek and
Beltagy, Iz and
Bethard, Steven and
Cotterell, Ryan and
Chakraborty, Tanmoy and
Zhou, Yichao",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.34/",
doi = "10.18653/v1/2021.naacl-main.34",
pages = "380--396",
abstract = "We rely on arguments in our daily lives to deliver our opinions and base them on evidence, making them more convincing in turn. However, finding and formulating arguments can be challenging. In this work, we present the Arg-CTRL - a language model for argument generation that can be controlled to generate sentence-level arguments for a given topic, stance, and aspect. We define argument aspect detection as a necessary method to allow this fine-granular control and crowdsource a dataset with 5,032 arguments annotated with aspects. Our evaluation shows that the Arg-CTRL is able to generate high-quality, aspect-specific arguments, applicable to automatic counter-argument generation. We publish the model weights and all datasets and code to train the Arg-CTRL."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schiller-etal-2021-aspect">
<titleInfo>
<title>Aspect-Controlled Neural Argument Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Schiller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Daxenberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristina</namePart>
<namePart type="family">Toutanova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iz</namePart>
<namePart type="family">Beltagy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We rely on arguments in our daily lives to deliver our opinions and base them on evidence, making them more convincing in turn. However, finding and formulating arguments can be challenging. In this work, we present the Arg-CTRL - a language model for argument generation that can be controlled to generate sentence-level arguments for a given topic, stance, and aspect. We define argument aspect detection as a necessary method to allow this fine-granular control and crowdsource a dataset with 5,032 arguments annotated with aspects. Our evaluation shows that the Arg-CTRL is able to generate high-quality, aspect-specific arguments, applicable to automatic counter-argument generation. We publish the model weights and all datasets and code to train the Arg-CTRL.</abstract>
<identifier type="citekey">schiller-etal-2021-aspect</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-main.34</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-main.34/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>380</start>
<end>396</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Aspect-Controlled Neural Argument Generation
%A Schiller, Benjamin
%A Daxenberger, Johannes
%A Gurevych, Iryna
%Y Toutanova, Kristina
%Y Rumshisky, Anna
%Y Zettlemoyer, Luke
%Y Hakkani-Tur, Dilek
%Y Beltagy, Iz
%Y Bethard, Steven
%Y Cotterell, Ryan
%Y Chakraborty, Tanmoy
%Y Zhou, Yichao
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F schiller-etal-2021-aspect
%X We rely on arguments in our daily lives to deliver our opinions and base them on evidence, making them more convincing in turn. However, finding and formulating arguments can be challenging. In this work, we present the Arg-CTRL - a language model for argument generation that can be controlled to generate sentence-level arguments for a given topic, stance, and aspect. We define argument aspect detection as a necessary method to allow this fine-granular control and crowdsource a dataset with 5,032 arguments annotated with aspects. Our evaluation shows that the Arg-CTRL is able to generate high-quality, aspect-specific arguments, applicable to automatic counter-argument generation. We publish the model weights and all datasets and code to train the Arg-CTRL.
%R 10.18653/v1/2021.naacl-main.34
%U https://aclanthology.org/2021.naacl-main.34/
%U https://doi.org/10.18653/v1/2021.naacl-main.34
%P 380-396
Markdown (Informal)
[Aspect-Controlled Neural Argument Generation](https://aclanthology.org/2021.naacl-main.34/) (Schiller et al., NAACL 2021)
ACL
- Benjamin Schiller, Johannes Daxenberger, and Iryna Gurevych. 2021. Aspect-Controlled Neural Argument Generation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 380–396, Online. Association for Computational Linguistics.