@inproceedings{chakrabarty-etal-2021-entrust,
title = "{ENTRUST}: Argument Reframing with Language Models and Entailment",
author = "Chakrabarty, Tuhin and
Hidey, Christopher and
Muresan, Smaranda",
editor = "Toutanova, Kristina and
Rumshisky, Anna and
Zettlemoyer, Luke and
Hakkani-Tur, Dilek and
Beltagy, Iz and
Bethard, Steven and
Cotterell, Ryan and
Chakraborty, Tanmoy and
Zhou, Yichao",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.394",
doi = "10.18653/v1/2021.naacl-main.394",
pages = "4958--4971",
abstract = "Framing involves the positive or negative presentation of an argument or issue depending on the audience and goal of the speaker. Differences in lexical framing, the focus of our work, can have large effects on peoples{'} opinions and beliefs. To make progress towards reframing arguments for positive effects, we create a dataset and method for this task. We use a lexical resource for {``}connotations{''} to create a parallel corpus and propose a method for argument reframing that combines controllable text generation (positive connotation) with a post-decoding entailment component (same denotation). Our results show that our method is effective compared to strong baselines along the dimensions of fluency, meaning, and trustworthiness/reduction of fear.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chakrabarty-etal-2021-entrust">
<titleInfo>
<title>ENTRUST: Argument Reframing with Language Models and Entailment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tuhin</namePart>
<namePart type="family">Chakrabarty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Hidey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristina</namePart>
<namePart type="family">Toutanova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iz</namePart>
<namePart type="family">Beltagy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Framing involves the positive or negative presentation of an argument or issue depending on the audience and goal of the speaker. Differences in lexical framing, the focus of our work, can have large effects on peoples’ opinions and beliefs. To make progress towards reframing arguments for positive effects, we create a dataset and method for this task. We use a lexical resource for “connotations” to create a parallel corpus and propose a method for argument reframing that combines controllable text generation (positive connotation) with a post-decoding entailment component (same denotation). Our results show that our method is effective compared to strong baselines along the dimensions of fluency, meaning, and trustworthiness/reduction of fear.</abstract>
<identifier type="citekey">chakrabarty-etal-2021-entrust</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-main.394</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-main.394</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>4958</start>
<end>4971</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ENTRUST: Argument Reframing with Language Models and Entailment
%A Chakrabarty, Tuhin
%A Hidey, Christopher
%A Muresan, Smaranda
%Y Toutanova, Kristina
%Y Rumshisky, Anna
%Y Zettlemoyer, Luke
%Y Hakkani-Tur, Dilek
%Y Beltagy, Iz
%Y Bethard, Steven
%Y Cotterell, Ryan
%Y Chakraborty, Tanmoy
%Y Zhou, Yichao
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F chakrabarty-etal-2021-entrust
%X Framing involves the positive or negative presentation of an argument or issue depending on the audience and goal of the speaker. Differences in lexical framing, the focus of our work, can have large effects on peoples’ opinions and beliefs. To make progress towards reframing arguments for positive effects, we create a dataset and method for this task. We use a lexical resource for “connotations” to create a parallel corpus and propose a method for argument reframing that combines controllable text generation (positive connotation) with a post-decoding entailment component (same denotation). Our results show that our method is effective compared to strong baselines along the dimensions of fluency, meaning, and trustworthiness/reduction of fear.
%R 10.18653/v1/2021.naacl-main.394
%U https://aclanthology.org/2021.naacl-main.394
%U https://doi.org/10.18653/v1/2021.naacl-main.394
%P 4958-4971
Markdown (Informal)
[ENTRUST: Argument Reframing with Language Models and Entailment](https://aclanthology.org/2021.naacl-main.394) (Chakrabarty et al., NAACL 2021)
ACL
- Tuhin Chakrabarty, Christopher Hidey, and Smaranda Muresan. 2021. ENTRUST: Argument Reframing with Language Models and Entailment. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4958–4971, Online. Association for Computational Linguistics.