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Abstract

The recent “Text-to-Text Transfer Trans-
former” (T5) leveraged a unified text-to-text
format and scale to attain state-of-the-art re-
sults on a wide variety of English-language
NLP tasks. In this paper, we introduce mT5, a
multilingual variant of T5 that was pre-trained
on a new Common Crawl-based dataset cover-
ing 101 languages. We detail the design and
modified training of mT5 and demonstrate its
state-of-the-art performance on many multilin-
gual benchmarks. We also describe a simple
technique to prevent “accidental translation”
in the zero-shot setting, where a generative
model chooses to (partially) translate its pre-
diction into the wrong language. All of the
code and model checkpoints used in this work
are publicly available.1

1 Introduction

Current natural language processing (NLP)
pipelines often make use of transfer learning, where
a model is pre-trained on a data-rich task before
being fine-tuned on a downstream task of interest
(Ruder et al., 2019). The success of this paradigm
is partially thanks to the release of parameter check-
points for pre-trained models. These checkpoints
allow members of the NLP community to quickly
attain strong performance on many tasks without
needing to perform expensive pre-training them-
selves. As one example, the pre-trained check-
points for the “Text-to-Text Transfer Transformer”
(T5) model released by Raffel et al. (2020) have
been used to achieve state-of-the-art results on
many benchmarks (Khashabi et al., 2020; Roberts
et al., 2020; Kale, 2020; Izacard and Grave, 2020;
Nogueira et al., 2020; Narang et al., 2020, etc.).

Unfortunately, many of these language models
were pre-trained solely on English-language text.
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1https://goo.gle/mt5-code

This significantly limits their use given that roughly
80% of the world population does not speak En-
glish (Crystal, 2008). One way the community
has addressed this English-centricity has been to
release dozens of models, each pre-trained on a
single non-English language (Carmo et al., 2020;
de Vries et al., 2019; Le et al., 2020; Martin et al.,
2020; Delobelle et al., 2020; Malmsten et al., 2020;
Nguyen and Tuan Nguyen, 2020; Polignano et al.,
2019, etc.). A more general solution is to produce
multilingual models that have been pre-trained on
a mixture of many languages. Popular models of
this type are mBERT (Devlin, 2018), mBART (Liu
et al., 2020a), and XLM-R (Conneau et al., 2020),
which are multilingual variants of BERT (Devlin
et al., 2019), BART (Lewis et al., 2020b), and
RoBERTa (Liu et al., 2019), respectively.

In this paper, we continue this tradition by re-
leasing mT5, a multilingual variant of T5. Our goal
with mT5 is to produce a massively multilingual
model that deviates as little as possible from the
recipe used to create T5. As such, mT5 inherits
all of the benefits of T5 (described in section 2),
such as its general-purpose text-to-text format, its
design based on insights from a large-scale em-
pirical study, and its scale. To train mT5, we in-
troduce a multilingual variant of the C4 dataset
called mC4. mC4 comprises natural text in 101
languages drawn from the public Common Crawl
web scrape. To validate the performance of mT5,
we include results on several benchmark datasets,
showing state-of-the-art results in many cases. Fi-
nally, we characterize a problematic behavior of
pre-trained generative multilingual language mod-
els in the zero-shot setting, where they erroneously
translate part of their prediction into the wrong lan-
guage. To address this “accidental translation”, we
describe a simple procedure that involves mixing
in unlabeled pre-training data during fine-tuning
and demonstrate that it dramatically alleviates this
issue. We release our pre-trained models and code

https://goo.gle/mt5-code
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so that the community can leverage our work.1

2 Background on T5 and C4

In this section, we provide a short overview of T5
and the C4 pre-training dataset. Further details are
available in Raffel et al. (2020).

T5 is a pre-trained language model whose pri-
mary distinction is its use of a unified “text-to-
text” format for all text-based NLP problems. This
approach is natural for generative tasks (such as
machine translation or abstractive summarization)
where the task format requires the model to gen-
erate text conditioned on some input. It is more
unusual for classification tasks, where T5 is trained
to output the literal text of the label (e.g. “posi-
tive” or “negative” for sentiment analysis) instead
of a class index. The primary advantage of this
approach is that it allows the use of exactly the
same training objective (teacher-forced maximum-
likelihood) for every task, which in practice means
that a single set of hyperparameters can be used for
effective fine-tuning on any downstream task. Sim-
ilar unifying frameworks were proposed by Keskar
et al. (2019) and McCann et al. (2018). Given the
sequence-to-sequence structure of this task format,
T5 uses a basic encoder-decoder Transformer ar-
chitecture as originally proposed by Vaswani et al.
(2017). T5 is pre-trained on a masked language
modeling “span-corruption” objective, where con-
secutive spans of input tokens are replaced with a
mask token and the model is trained to reconstruct
the masked-out tokens.

An additional distinguishing factor of T5 is its
scale, with pre-trained model sizes available from
60 million to 11 billion parameters. These models
were pre-trained on around 1 trillion tokens of data.
Unlabeled data comes from the C4 dataset, which
is a collection of about 750GB of English-language
text sourced from the public Common Crawl web
scrape. C4 includes heuristics to extract only nat-
ural language (as opposed to boilerplate and other
gibberish) in addition to extensive deduplication.
The pre-training objective, model architecture, scal-
ing strategy, and many other design choices for T5
were chosen based on a large-scale empirical study
described in detail in Raffel et al. (2020).

3 mC4 and mT5

Our goal in this paper is to create a massively mul-
tilingual model that follows T5’s recipe as closely
as possible. Towards this end, we develop an ex-

tended version of the C4 pre-training dataset that
covers 101 languages and introduce changes to T5
to better suit this multilinguality.

3.1 mC4

The C4 dataset was explicitly designed to be
English only: any page that was not given a
probability of at least 99% of being English by
langdetect2 was discarded. In contrast, for
mC4 we use cld33 to identify over 100 languages.
Since some of these languages are relatively scarce
on the internet, we make use of all of the 71
monthly web scrapes released so far by Common
Crawl. This is dramatically more source data
than was used for C4, for which the April 2019
web scrape alone was enough to provide plenty of
English-language data.

An important heuristic filtering step in C4 was
the removal of lines that did not end in an English
terminal punctuation mark. Since many languages
do not use English terminal punctuation marks, we
instead apply a “line length filter” that requires
pages to contain at least three lines of text with 200
or more characters. Otherwise, we follow C4’s fil-
tering by deduplicating lines across documents and
removing pages containing bad words.4 Finally, we
detect each page’s primary language using cld3
and remove those with a confidence below 70%.

After these filters are applied, we group the re-
maining pages by language and include in the cor-
pus all languages with 10,000 or more pages. This
produces text in 107 “languages” as defined by
cld3. However, we note that six of these are
just script variants of the same spoken language
(e.g. ru is Russian in Cyrillic script and ru-Latn
is Russian in Latin script). A histogram of the
page counts for each language is shown in fig. 1.
Detailed dataset statistics including per-language
token counts are shown in Appendix A.

3.2 mT5

The model architecture and training procedure that
we use for mT5 closely follows that of T5. Specifi-
cally, we base mT5 on the “T5.1.1” recipe,5 which
improves upon T5 by using GeGLU nonlinearities
(Shazeer, 2020), scaling both dmodel and dff instead

2https://pypi.org/project/langdetect/
3https://github.com/google/cld3
4https://github.com/LDNOOBW/
5https://github.com/google-research/

text-to-text-transfer-transformer/blob/
master/released_checkpoints.md#t511

https://pypi.org/project/langdetect/
https://github.com/google/cld3
https://github.com/LDNOOBW/
https://github.com/google-research/text-to-text-transfer-transformer/blob/master/released_checkpoints.md#t511
https://github.com/google-research/text-to-text-transfer-transformer/blob/master/released_checkpoints.md#t511
https://github.com/google-research/text-to-text-transfer-transformer/blob/master/released_checkpoints.md#t511
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Figure 1: Page counts per language in mC4 (left axis), and percentage of mT5 training examples coming from
each language, for different language sampling exponents α (right axis). Our final model uses α=0.3.

Model Architecture Parameters # languages Data source

mBERT (Devlin, 2018) Encoder-only 180M 104 Wikipedia
XLM (Conneau and Lample, 2019) Encoder-only 570M 100 Wikipedia
XLM-R (Conneau et al., 2020) Encoder-only 270M – 550M 100 Common Crawl (CCNet)
mBART (Lewis et al., 2020b) Encoder-decoder 680M 25 Common Crawl (CC25)
MARGE (Lewis et al., 2020a) Encoder-decoder 960M 26 Wikipedia or CC-News
mT5 (ours) Encoder-decoder 300M – 13B 101 Common Crawl (mC4)

Table 1: Comparison of mT5 to existing massively multilingual pre-trained language models. Multiple versions of
XLM and mBERT exist; we refer here to the ones that cover the most languages. Note that XLM-R counts five
Romanized variants as separate languages, while we ignore six Romanized variants in the mT5 language count.

of just dff in the larger models, and pre-training on
unlabeled data only with no dropout. We refer to
Raffel et al. (2020) for further details on T5.

A major factor in pre-training multilingual mod-
els is how to sample data from each language.
Ultimately, this choice is a zero-sum game: If
low-resource languages are sampled too often, the
model may overfit; if high-resource languages are
not trained on enough, the model will underfit. We
therefore take the approach used in (Devlin, 2018;
Conneau et al., 2020; Arivazhagan et al., 2019) and
boost lower-resource languages by sampling ex-
amples according to the probability p(L) ∝ |L|α,
where p(L) is the probability of sampling text from
a given language during pre-training and |L| is the
number of examples in the language. The hyper-
parameter α (typically with α < 1) allows us to
control how much to “boost” the probability of
training on low-resource languages. Values used
by prior work include α = 0.7 for mBERT (Devlin,
2018), α = 0.3 for XLM-R (Conneau et al., 2020),
and α = 0.2 for MMNMT (Arivazhagan et al.,
2019). We tried all three of these values (ablation
results in section 4.2) and found α = 0.3 to give a
reasonable compromise between performance on
high- and low-resource languages.

The fact that our model covers over 100 lan-
guages necessitates a larger vocabulary. Following
XLM-R (Conneau et al., 2018), we increase the vo-
cabulary size to 250,000 wordpieces. As in T5, we

use SentencePiece (Kudo and Richardson, 2018;
Kudo, 2018) models trained with the language sam-
pling rates used during pre-training. To accom-
modate languages with large character sets like
Chinese, we use a character coverage of 0.99999
and enable SentencePiece’s “byte-fallback” feature
to ensure that any string can be uniquely encoded.

3.3 Comparison to Related Models

To contextualize our new model, we provide a brief
comparison with existing massively multilingual
pre-trained language models. For brevity, we focus
on models that support more than a few dozen lan-
guages. Table 1 gives a high-level comparison of
mT5 to the most similar models.

mBERT (Devlin, 2018) is a multilingual ver-
sion of BERT (Devlin et al., 2019). Similar to our
approach with mT5, mBERT follows the BERT
recipe as closely as possible (same architecture, ob-
jective, etc.). The primary difference is the training
set: Instead of training on English Wikipedia and
the Toronto Books Corpus, mBERT is trained on
up to 104 languages from Wikipedia. XLM (Con-
neau and Lample, 2019) is also based on BERT but
applies improved methods for pre-training multi-
lingual language models including explicitly cross-
lingual pre-training objectives. Many pre-trained
versions of XLM have been released; the most
massively-multilingual variant was trained on 100
languages from Wikipedia. XLM-R (Conneau
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Model Sentence pair Structured Question answering

XNLI PAWS-X WikiAnn NER XQuAD MLQA TyDi QA-GoldP

Metrics Acc. Acc. F1 F1 / EM F1 / EM F1 / EM

Cross-lingual zero-shot transfer (models fine-tuned on English data only)

mBERT 65.4 81.9 62.2 64.5 / 49.4 61.4 / 44.2 59.7 / 43.9
XLM 69.1 80.9 61.2 59.8 / 44.3 48.5 / 32.6 43.6 / 29.1
InfoXLM 81.4 - - - / - 73.6 / 55.2 - / -
X-STILTs 80.4 87.7 64.7 77.2 / 61.3 72.3 / 53.5 76.0 / 59.5
XLM-R 79.2 86.4 65.4 76.6 / 60.8 71.6 / 53.2 65.1 / 45.0
VECO 79.9 88.7 65.7 77.3 / 61.8 71.7 / 53.2 67.6 / 49.1
RemBERT 80.8 87.5 70.1 79.6 / 64.0 73.1 / 55.0 77.0 / 63.0
mT5-Small 67.5 82.4 50.5 58.1 / 42.5 54.6 / 37.1 36.4 / 24.4
mT5-Base 75.4 86.4 55.7 67.0 / 49.0 64.6 / 45.0 59.1 / 42.4
mT5-Large 81.1 88.9 58.5 77.8 / 61.5 71.2 / 51.7 68.4 / 50.9
mT5-XL 82.9 89.6 65.5 79.5 / 63.6 73.5 / 54.5 77.8 / 61.8
mT5-XXL 85.0 90.0 69.2 82.5 / 66.8 76.0 / 57.4 82.0 / 67.3

Translate-train (models fine-tuned on English data plus translations in all target languages)

XLM-R 82.6 90.4 - 80.2 / 65.9 72.8 / 54.3 66.5 / 47.7
FILTER + Self-Teaching 83.9 91.4 - 82.4 / 68.0 76.2 / 57.7 68.3 / 50.9
VECO 83.0 91.1 - 79.9 / 66.3 73.1 / 54.9 75.0 / 58.9
mT5-Small 72.0 79.9 - 64.3 / 49.5 56.6 / 38.8 49.8 / 35.6
mT5-Base 79.8 89.3 - 75.3 / 59.7 67.6 / 48.5 66.4 / 51.0
mT5-Large 84.4 91.2 - 81.2 / 65.9 73.9 / 55.2 75.7 / 60.1
mT5-XL 85.3 91.0 - 82.7 / 68.1 75.1 / 56.6 80.1 / 65.0
mT5-XXL 87.1 91.5 - 85.2 / 71.3 76.9 / 58.3 83.3 / 69.4

In-language multitask (models fine-tuned on gold data in all target languages)

mBERT - - 89.2 - - 77.6 / 68.0
mT5-Small - - 86.4 - - 74.0 / 62.7
mT5-Base - - 88.2 - - 79.7 / 68.4
mT5-Large - - 89.7 - - 85.3 / 75.3
mT5-XL - - 91.3 - - 87.6 / 78.4
mT5-XXL - - 92.2 - - 88.7 / 79.5

Table 2: Results on XTREME sentence-pair classification, structured prediction and question answering tasks.
mBERT metrics are from Hu et al. (2020). Metrics for XLM, InfoXLM, X-STILTs and XLM-R are from Fang
et al. (2020), though Conneau et al. (2020) report better performance of XLM-R on XNLI (80.9). All other metrics
are from the original sources: FILTER (Fang et al., 2020), VECO (Luo et al., 2020) and RemBERT (Chung et al.,
2020). For the “translate-train” setting, we include English training data, so as to be comparable with Fang et al.
(2020) and Luo et al. (2020). This differs from the XTREME “translate-train” setup of Hu et al. (2020). For mT5
results on TyDi QA zero-shot, we report the median across five fine-tuning runs, as we observed high variance
across runs.6 Full results for all languages in all tasks are provided in the appendix.

et al., 2020) is an improved version of XLM based
on the RoBERTa model (Liu et al., 2019). XLM-R
is trained with a cross-lingual masked language
modeling objective on data in 100 languages from
Common Crawl. To improve the pre-training data
quality, pages from Common Crawl were filtered
by an n-gram language model trained on Wikipedia
(Wenzek et al., 2020). mBART (Liu et al., 2020a)
is a multilingual encoder-decoder model that is
based on BART (Lewis et al., 2020b). mBART is
trained with a combination of span masking and
sentence shuffling objectives on a subset of 25 lan-
guages from the same data as XLM-R. MARGE
(Lewis et al., 2020a) is a multilingual encoder-
decoder model that is trained to reconstruct a docu-

ment in one language by retrieving documents in
other languages. It uses data in 26 languages from
Wikipedia and CC-News (Liu et al., 2019).

4 Experiments

To validate the performance of mT5, we evaluate
our models on 6 tasks from the XTREME multilin-
gual benchmark (Hu et al., 2020): the XNLI (Con-
neau et al., 2018) entailment task covering 14 lan-
guages; the XQuAD (Artetxe et al., 2020), MLQA
(Lewis et al., 2019), and TyDi QA (Clark et al.,
2020) reading comprehension benchmarks with 10,

6Standard deviations of mT5 models on TyDi QA zero-
shot across five runs are: Small: 0.44, Base: 1.38, Large: 3.66,
XL: 1.29, XXL: 0.20.
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7, and 11 languages respectively; the Named En-
tity Recognition (NER) dataset of WikiAnn (Pan
et al., 2017) restricted to the 40 languages from
XTREME (Hu et al., 2020), and the PAWS-X (Yang
et al., 2019) paraphrase identification dataset with
7 languages. We cast all tasks into the text-to-text
format, i.e. generating the label text (XNLI and
PAWS-X), entity tags and labels (WikiAnn NER),
or answer (XQuAD, MLQA, and TyDi QA) di-
rectly in a generative fashion. For NER, if there are
multiple entities, they are concatenated in the order
they appear, and if there are no entities then the
target text is “None”. We consider three variants
of these tasks: (1) “zero-shot”, where the model
is fine-tuned only on English data, (2) “translate-
train”, adding machine translations from English
into each target language, and (3) “in-language mul-
titask”, training on gold data in all target languages.
For brevity, we refer to Hu et al. (2020) for further
details on these benchmarks.

Following the original T5 recipe, we consider
five model sizes: Small (≈ 300M parameters),
Base (580M), Large (1.2B), XL (3.7B), and XXL
(13B). The increase in parameter counts com-
pared to the corresponding T5 model variants
comes from the larger vocabulary used in mT5.
Note that, because mT5 is an encoder-decoder
model, it has roughly twice as many parameters as
correspondingly-sized encoder-only models such
as XLM-R. For example, the “Large” variant of
XLM-R has 550 million parameters whereas mT5-
Large has around 1 billion. However, the compu-
tational cost for text classification is roughly the
same: In both cases, the model processes a length-
T input sequence with an encoder of approximately
equal size. In an encoder-only model like XLM-R,
the encoder processes one additional “CLS” token,
which is used to generate the representation for clas-
sification. In mT5, the decoder typically produces
two additional tokens: the class label and an end-
of-sequence token. Since the decoder has the same
architecture (ignoring encoder-decoder attention)
as the encoder, the computational cost of classifi-
cation with mT5 typically amounts to the cost of
processing T + 2 tokens compared to T + 1 for
an encoder-only model. However, encoder-decoder
architectures have the additional benefit of being
applicable to generative tasks like abstractive sum-
marization or dialog.

We pre-train our mT5 model variants for 1 mil-
lion steps on batches of 1024 length-1024 input

sequences, corresponding to roughly 1 trillion in-
put tokens total. This is the same amount of pre-
training as T5 and about 1

6 as much as XLM-R.7

Note that our pre-training dataset is large enough
that we only complete a fraction of an epoch for
high-resource languages (e.g. only covering 2% of
the English data). While XLM-R’s pre-training cor-
pus CC-100 is 20 times smaller than mC4, XLM-R
nevertheless pre-trains for more steps, and sees
over 6 times more tokens in pre-training.

We use the same inverse square-root learning
rate schedule used by T5 during pre-training, with
the learning rate set to 1/

√
max(n, k) where n is

the current training iteration and k = 104 is the
number of warm-up steps. Following the T5.1.1
recipe, we do not apply dropout during pre-training.
We use the same self-supervised objective as T5,
with 15% of tokens masked and an average noise
span length of 3. We ablate some of these experi-
mental details in section 4.2.

For fine-tuning, we use a constant learning rate
of 0.001 and dropout rate of 0.1 for all tasks. We
use a batch size of 217 for most tasks, but decrease
to 216 for WikiAnn NER zero-shot, due to the small
size of the training, and increase to 220 tokens for
XNLI, which we found gave better performance.
For early stopping, we save checkpoints every 200
steps and choose the checkpoint with the highest
performance on the standard validation sets speci-
fied by XTREME.

4.1 Results

Table 2 presents our main results, with per-
language breakdowns for each task given in Ap-
pendix B. Our largest model mT5-XXL exceeds
state-of-the-art on all classification and QA tasks
and is near SOTA on NER (69.2 vs. 70.1). Note
that unlike our model, InfoXLM (Chi et al., 2020)
and VECO (Luo et al., 2020) benefit from paral-
lel training data, while X-STILTs (Phang et al.,
2020) leverages labeled data from tasks similar to
the target task. Overall, our results highlight the
importance of model capacity in cross-lingual rep-
resentation learning and suggest that scaling up a
simple pre-training recipe can be a viable alterna-
tive to more complex techniques relying on LM
filtering, parallel data, or intermediate tasks.

In the “translate-train” setting, we exceed state-

7XLM-R Large sees 6.3 trillion tokens during pre-training
(1.5 million batches of 8192 sequences of 512 tokens), and
uses a packing mechanism similar to T5 to minimize the num-
ber of “wasted” padding tokens.
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T5 mT5

Small 87.2 / 79.1 84.7 / 76.4
Base 92.1 / 85.4 89.6 / 83.8
Large 93.8 / 86.7 93.0 / 87.0
XL 95.0 / 88.5 94.5 / 88.9
XXL 96.2 / 91.3 95.6 / 90.4

Table 3: Comparison of T5 vs. mT5 on SQuAD ques-
tion answering (F1/EM).

109 1010
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Figure 2: Average F1 on the TyDi QA GoldP task
across languages. Performance improves with increas-
ing model capacity. The importance of in-language
training data (whether gold In-Language Multitask or
synthetic Translate-Train) decreases with model scale,
as seen by Zero-Shot closing the quality gap.

of-the-art on all XTREME classification and QA
tasks. For these tasks, we fine-tune on the combina-
tion of the labeled English data and machine trans-
lations thereof.8 This allows direct comparison
with both FILTER (Fang et al., 2020) as well as the
XLM-R baseline of Fang et al. (2020). Note that
this setup differs from XTREME “translate-train”
(Hu et al., 2020), which excludes English.

Figure 2 shows that model capacity is key to im-
proving performance on variants of the TyDi QA
GoldP task in the absence of “gold” multilingual
data: For the smallest model, training on gold
datasets (in-language multitask) achieves dramat-
ically better performance than using weakly su-
pervised data (translate-train) or English-only data
(zero-shot), whereas the gap between these three
settings is much smaller for the largest model. For
our two largest models, zero-shot and translate-
train performance is nearly the same, showing that
machine translations of the monolingual dataset
bring diminishing returns as model capacity in-

8We use the translation data provided by Hu et al. (2020)
throughout. On the PAWS-X task, FILTER used translation
data from the original task instead. Switching to this data
would improve our scores slightly (mT5-XXL 91.5 → 92.0).

creases. Overall, these trends point to the possibil-
ity of avoiding the costly step of annotating data in
more than one language when using large models.

Massively multilingual models have been ob-
served to underperform on a given language when
compared to a similarly-sized “dedicated” model
trained specifically for that language (Arivazhagan
et al., 2019). To quantify this effect, we compare
the performance of mT5 and T5 when fine-tuned
on the SQuAD reading comprehension benchmark
(Rajpurkar et al., 2016). The results are shown in
table 3, with results for T5 reproduced from Raffel
et al. (2020). While the Small and Base mT5 mod-
els fall short of their English T5 counterparts, we
find that the larger models close the gap. This sug-
gests there may be a turning point past which the
model has enough capacity to effectively learn 101
languages without significant interference effects.

Looking at the per-language breakdowns in Ap-
pendix B, we find that mT5 performs well on both
high- and low-resource languages. For example,
in table 7, we see mT5-XXL outperforms XLM-R
by between +3 (English) and +9 (Swahili) points
on each individual language on XNLI zero-shot.
In table 12 we see similarly strong performance
across languages on TyDi QA GoldP (including
lower-resource languages like Swahili and Telugu),
with mT5-XXL surpassing human performance in
four of nine languages on the “in-language” setting.

4.2 Ablation

We run six ablations, modifying various settings,
using our Large model as a baseline: (i) increase
dropout to 0.1 in hopes of mitigating overfitting
on low-resource languages, (ii) decrease sequence
length to 512 (as was used in T5), (iii) increase the
average noise span length in the pre-training objec-
tive to 10 since we observe fewer characters per
token than T5, (iv) adjust the language sampling
exponent α to {0.2, 0.7} as used in MMNMT (Ari-
vazhagan et al., 2019) and mBERT (Devlin, 2018),
respectively, (v) turn off the “line length filter” in
the mC4 data pipeline, and (vi) supplement mC4
with Wikipedia data9 from 103 languages.

The effect of these ablations on XNLI zero-shot
accuracy is shown in table 4. In each case, the
average XNLI score is lower than the mT5-Large
baseline, justifying our chosen settings. The line

9We use the 2020 Wikipedia data from TensorFlow
Datasets, selecting the same languages as mBERT.
https://www.tensorflow.org/datasets/
catalog/wikipedia

https://www.tensorflow.org/datasets/catalog/wikipedia
https://www.tensorflow.org/datasets/catalog/wikipedia
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Model Accuracy

Baseline (mT5-Large) 81.1
Dropout 0.1 77.6
Sequence length 512 80.5
Span length 10 78.6
α = 0.7 80.7
α = 0.2 80.7
No line length filter 79.1
Add Wikipedia data 80.3

Table 4: Average XNLI zero-shot accuracy of various
ablations on our mT5-Large model. Per-language met-
rics are shown in Appendix C.

length filter provides a +2 point boost, corrobo-
rating the findings of Conneau et al. (2020) and
Raffel et al. (2020) that filtering low-quality pages
from Common Crawl is valuable. Increasing the
language sampling exponent α to 0.7 has the ex-
pected effect of improving performance in high-
resource languages (e.g. Russian 81.5 → 82.8),
while hurting low-resource languages (e.g. Swahili
75.4 → 70.6), with the average effect being neg-
ative. Conversely, lowering α to 0.2 boosts one
tail language slightly (Urdu 73.5 → 73.9) but is
harmful elsewhere. Detailed per-language metrics
on XNLI and the results of our ablations on zero-
shot XQuAD are provided in Appendix C, showing
similar trends.

5 Zero-Shot Generation

Since mT5 is a generative model, it can output
arbitrary text predictions in a free form fashion.
This is in contrast to “encoder-only” models like
mBERT and XLM(-R) that make a prediction by ei-
ther extracting it from the input or producing a class
label. We found that the lack of constraints during
prediction caused mT5 to sometimes have trouble
generating a well-formed prediction in a language
unseen during fine-tuning. Focusing on XQuAD
zero-shot, we find that many of these errors are
due to “accidental translation” into the fine-tuning
language (English). In this section, we characterize
this behavior and demonstrate that it can be counter-
acted by mixing a small amount of our multilingual
pre-training task into the fine-tuning stage.

5.1 Illegal Predictions

In using a generative model for span selection (as
in extractive QA tasks), we hope the model learns
to generate “legal” spans that are substrings of the
provided context. However, unlike encoder-based
models like BERT, this is not a hard constraint of

Target Prediction Explanation

จํานวนเฉพาะ จํานวนเฉพาะ Decomposed Thai  ํา into  ํ + า
लोथर ड ेमाइिज़यर लोथर ड ेमाइिज़यर Decomposed Hindi ज़ into ज + ◌़

27 - 30 ％ 27 - 30 % Replaced full-width percent sign

12 . ª 12 . a Removed superscript

للبكتریا اللاھوائیة  البكتریا اللاھوائیة  Arabic “for anaerobic bacteria”
⇒ “anaerobic bacteria”

строками битов строки битов Russian “bit strings (instrumental)”
⇒ “bit strings (nominative)”

seis años six years Translated from Spanish

Zweiten Weltkrieg the Second World War Translated from German

新英格兰爱国者队 New英格兰爱国者队
Partially translated Chinese
“New England Patriots”

хлоропласт chlorопласт Partially translated Russian 
“chloroplast”

Table 5: Illegal mT5-XXL predictions on XQuAD zero-
shot, illustrating normalization (top), grammatical ad-
justment (middle) and translation (bottom).

the model. Notably, T5 learns to always output
legal spans on SQuAD, suggesting this is not a
major issue for generative models in simple cases.

A more challenging case for generative models is
zero-shot cross-lingual span selection. Here, a pre-
trained multilingual model is fine-tuned on English
but tested on other languages. We want the model
to generate legal non-English predictions despite
having only seen English targets in fine-tuning.

In practice, while mT5 achieves SOTA on
the zero-shot variants of XQuAD, MLQA and
TyDi QA, illegal predictions are still a problem. For
example, on zero-shot XQuAD, a non-trivial por-
tion of mT5 mistakes are in fact illegal spans, for all
model sizes (cf. fig. 4 “Baseline”). Through inspec-
tion, we find these illegal predictions mainly fall
into three categories: (i) normalization, (ii) gram-
matical adjustment, and (iii) accidental translation.
Table 5 provides examples of each type.

Normalization indicates predictions that would
be legal, except that “equivalent” Unicode charac-
ters have been substituted, so a legal span may be
recovered through Unicode NFKC normalization.
This is particularly common in Thai, Chinese and
Hindi, where most mT5-XXL illegal predictions
are resolved by normalization, as seen in fig. 3b.

Grammatical adjustment involves minor mor-
phological changes to the original text. We fre-
quently observe these adjustments when the target
span cannot stand as a well-formed answer on its
own. For example, mT5-XXL’s Arabic and Russian
predictions in the middle rows of table 5 are judged
by native speakers as correct and grammatical an-
swers to the posed XQuAD questions, while the
gold targets are judged as ungrammatical answers.
This type of illegal prediction is most common in
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Figure 3: Per-language error rates on XQuAD zero-
shot, sorted by illegal rate. Incorrect: Not matching
the target span. Illegal: Missing from the input context.
Illegal after norm: Illegal even after Unicode NFKC
normalization is applied to the prediction and context.

languages with extensive grammatical case mark-
ing, such as Russian, Turkish and German.

Accidental translation involves the model
translating part or all of a contextual span into En-
glish (the language of all fine-tuning data). On
the one hand, it is remarkable that mT5 performs
“spontaneous” translation despite never seeing par-
allel training data. On the other, as practitioners we
would ideally be able to control this behavior.

We observe accidental translation across all
model sizes and all XQuAD languages. The prob-
lem is most prevalent in mT5-Small and mT5-Base,
where from manual inspection, half or more of the
illegal predictions within each language exhibit
accidental translation, with many of the illegal pre-
dictions coming from Greek and Russian, as shown
in fig. 3a. While we do observe full phrase transla-
tions, a more common occurrence is partial trans-
lation, where the model outputs a token or two of
English before reverting to the correct target lan-
guage. The transition may even occur mid-word,
as in the prediction “chlorопласт”, where the first
half of the target “хлоропласт” (Russian: chloro-
plast) has been translated to English.

5.2 Preventing Accidental Translation

The most direct solution to avoiding accidental
translation on span selection tasks would be to mod-
ify our inference procedure. As is common practice

with encoder-based models, we could devise a task-
specific fine-tuning mechanism that restricts the
model to perform ranking over legal spans, remov-
ing the possibility of illegal predictions entirely.
While this would likely improve our zero-shot met-
rics, it is unsatisfying for two reasons: First, it
implies taking a step backward from the general
text-to-text interface, as different tasks would de-
mand different types of inference. Second, this
solution won’t extend to more “open-ended” zero-
shot generative tasks like summarization, where
the legal output space can’t be easily delimited.

For these reasons, we consider a more general
solution that remains within the text-to-text frame-
work and can apply to all zero-shot generation
tasks. Our motivating intuition is that the reason the
model outputs English when given a non-English
test input is that it has never observed a non-English
target during fine-tuning. As English-only fine-
tuning proceeds, the model’s assigned likelihood
of non-English tokens presumably decreases, even-
tually reaching the point where English becomes
the most likely answer to any question.

To prevent the model from “forgetting” how to
generate other languages, we use a strategy inspired
by domain/task-adaptive pre-training (Howard and
Ruder, 2018; Gururangan et al., 2020): We simply
mix in our unsupervised multilingual pre-training
task during fine-tuning. A similar approach was
explored by Liu et al. (2020b). We use the same
mC4 task definition as in pre-training, with two
adjustments: First, we remove all “sentinel” tokens
(corresponding to non-masked spans in the input
text) from the target sequence, as otherwise we
observe occasional sentinels in downstream predic-
tions. Second, we reduce the language sampling
parameter α from 0.3 to 0.1. This produces a near-
uniform distribution of languages, encouraging the
model to treat all languages as equally likely.10

With these changes, we mix a small amount of
our unsupervised task (covering 101 languages)
into XQuAD fine-tuning, at a ratio of just 1:100.
Figure 4 shows the results on XQuAD zero-shot er-
ror rates. The addition of even this small amount of
multilingual data has a marked effect on the mT5-
Small and mT5-Base models (where accidental
translation was most rampant), reducing the illegal
prediction rates by more than 70% (relative), and
contributing to an overall reduction in errors.

10Alternatively, one could mix in unlabeled data only for a
single language at a time. However, we believe this is contrary
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Figure 4: Error rates of mT5 on XQuAD zero-shot.
Baseline: Fine-tuning on XQuAD alone. Domain Pre-
serving Training (DPT): Mixing in the unsupervised
mC4 task with fine-tuning.

6 Conclusion

In this paper, we introduced mT5 and mC4: mas-
sively multilingual variants of the T5 model and
C4 dataset. We demonstrated that the T5 recipe is
straightforwardly applicable to the multilingual set-
ting, and achieved strong performance on a diverse
set of benchmarks. We also characterized illegal
predictions that can occur in zero-shot evaluation
of multilingual pre-trained generative models, and
described a simple technique to avoid this issue.
We release all code and pre-trained datasets used in
this paper to facilitate future work on multilingual
language understanding.11
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A mC4 Corpus Language Distribution

ISO Tokens Pages mT5 ISO Tokens Pages mT5
Code Language (B) (M) (%) Code Language (B) (M) (%)

en English 2,733 3,067 5.67 mk Macedonian 1.8 2.1 0.62
ru Russian 713 756 3.71 ml Malayalam 1.8 2.1 0.62
es Spanish 433 416 3.09 mn Mongolian 2.7 2.1 0.62
de German 347 397 3.05 ur Urdu 2.4 1.9 0.61
fr French 318 333 2.89 be Belarusian 2.0 1.7 0.59
it Italian 162 186 2.43 la Latin 1.3 1.7 0.58
pt Portuguese 146 169 2.36 eu Basque 1.4 1.6 0.57
pl Polish 130 126 2.15 tg Tajik 1.4 1.3 0.54
nl Dutch 73 96 1.98 te Telugu 1.3 1.2 0.52
tr Turkish 71 88 1.93 fy West Frisian 0.4 1.1 0.51
ja Japanese 164 87 1.92 kn Kannada 1.1 1.1 0.51
vi Vietnamese 116 79 1.87 ky Kyrgyz 1.0 1.0 0.50
id Indonesian 69 70 1.80 sw Swahili 1.0 1.0 0.50
cs Czech 63 60 1.72 so Somali 1.4 0.9 0.48
zh Chinese 39 55 1.67 my Burmese 0.9 0.8 0.47
fa Persian 52 54 1.67 uz Uzbek 0.9 0.8 0.46
ar Arabic 57 53 1.66 km Khmer 0.6 0.8 0.46
sv Swedish 45 49 1.61 - Russian (Latin) 0.9 0.7 0.46
ro Romanian 52 46 1.58 sd Sindhi 1.6 0.7 0.45
el Greek 43 42 1.54 gu Gujarati 0.8 0.6 0.43
uk Ukrainian 41 39 1.51 - Hindi (Latin) 0.6 0.6 0.43
hu Hungarian 39 37 1.48 jv Javanese 0.3 0.6 0.42
da Danish 29 29 1.38 zu Zulu 0.2 0.6 0.42
fi Finnish 25 27 1.35 si Sinhala 0.8 0.5 0.41
no Norwegian 27 25 1.33 - Japanese (Latin) 0.3 0.5 0.41
bg Bulgarian 22 23 1.29 eo Esperanto 0.7 0.5 0.40
hi Hindi 24 19 1.21 co Corsican 0.2 0.5 0.40
sk Slovak 18 18 1.19 ga Irish 0.5 0.5 0.40
ko Korean 26 16 1.14 - Greek (Latin) 0.4 0.4 0.39
th Thai 11 15 1.14 - Chinese (Latin) 0.2 0.4 0.37
ca Catalan 13 14 1.12 pa Punjabi 0.6 0.4 0.37
ms Malay 13 13 1.09 ceb Cebuano 0.2 0.4 0.36
iw Hebrew 17 12 1.06 mg Malagasy 0.2 0.3 0.36
lt Lithuanian 11 11 1.04 ps Pashto 0.4 0.3 0.36
sl Slovenian 8.8 8.5 0.95 sn Shona 0.2 0.3 0.35
mr Marathi 14 7.8 0.93 gd Scottish Gaelic 0.4 0.3 0.35
bn Bengali 7.3 7.4 0.91 ku Kurdish 0.4 0.3 0.34
et Estonian 6.9 6.9 0.89 hmn Hmong 0.2 0.3 0.34
lv Latvian 7.0 6.4 0.87 su Sundanese 0.1 0.3 0.34
az Azerbaijani 4.4 5.3 0.82 ht Haitian Creole 0.2 0.3 0.33
gl Galician 2.4 4.6 0.79 ha Hausa 0.2 0.2 0.33
cy Welsh 4.9 4.1 0.76 ny Chichewa 0.1 0.2 0.29
sq Albanian 4.0 4.1 0.76 am Amharic 0.3 0.2 0.29
ta Tamil 3.4 3.5 0.73 - Bulgarian (Latin) 0.09 0.2 0.29
sr Serbian 4.3 3.4 0.72 yi Yiddish 0.3 0.1 0.28
ne Nepali 3.2 2.9 0.69 lo Lao 0.1 0.1 0.28
lb Luxembourgish 1.0 2.7 0.68 mi Maori 0.1 0.1 0.25
hy Armenian 2.4 2.4 0.65 sm Samoan 0.09 0.1 0.25
kk Kazakh 3.1 2.4 0.65 ig Igbo 0.09 0.09 0.24
ka Georgian 2.5 2.3 0.64 haw Hawaiian 0.09 0.08 0.24
mt Maltese 5.2 2.3 0.64 xh Xhosa 0.06 0.07 0.22
af Afrikaans 1.7 2.2 0.63 st Sotho 0.08 0.07 0.22
fil Filipino 2.1 2.1 0.62 yo Yoruba 0.05 0.05 0.20
is Icelandic 2.6 2.1 0.62

Table 6: Statistics of the mC4 corpus, totaling 6.6B pages and 6.3T tokens. The “mT5” column indicates the
percentage of mT5 training data coming from a given language, using the default exponential smoothing value of
α=0.3. We list 107 “languages” as detected by cld3, but note six of these (marked “Latin”) are just Romanized
variants of existing languages.
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B Per-Language Results on All Tasks

Model en ar bg de el es fr hi ru sw th tr ur vi zh avg

Cross-lingual zero-shot transfer (models fine-tune on English data only)

mBERT 80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4
XLM 82.8 66.0 71.9 72.7 70.4 75.5 74.3 62.5 69.9 58.1 65.5 66.4 59.8 70.7 70.2 69.1
XLM-R 88.7 77.2 83.0 82.5 80.8 83.7 82.2 75.6 79.1 71.2 77.4 78.0 71.7 79.3 78.2 79.2
mT5-Small 79.6 65.2 71.3 69.2 68.6 72.7 70.7 62.5 70.1 59.7 66.3 64.4 59.9 66.3 65.8 67.5
mT5-Base 84.7 73.3 78.6 77.4 77.1 80.3 79.1 70.8 77.1 69.4 73.2 72.8 68.3 74.2 74.1 75.4
mT5-Large 89.4 79.8 84.1 83.4 83.2 84.2 84.1 77.6 81.5 75.4 79.4 80.1 73.5 81.0 80.3 81.1
mT5-XL 90.6 82.2 85.4 85.8 85.4 81.3 85.3 80.4 83.7 78.6 80.9 82.0 77.0 81.8 82.7 82.9
mT5-XXL 91.6 84.5 87.7 87.3 87.3 87.8 86.9 83.2 85.1 80.3 81.7 83.8 79.8 84.6 83.6 85.0

Translate-train (models fine-tune on English training data plus translations in all target languages)

mT5-Small 78.3 70.3 74.8 73.6 73.6 74.9 74.1 68.3 73.6 67.6 72.0 70.8 65.1 70.2 73.2 72.0
mT5-Base 85.8 78.8 82.2 81.6 81.4 83.0 82.1 77.0 81.1 74.8 78.6 78.4 73.3 78.9 80.2 79.8
mT5-Large 90.1 83.3 86.8 85.9 85.8 87.2 86.1 82.6 84.7 79.7 82.9 83.8 78.8 84.0 84.4 84.4
mT5-XL 91.0 84.0 87.5 87.2 86.7 88.5 87.4 83.1 85.3 80.9 83.2 84.7 80.3 84.8 85.0 85.3
mT5-XXL 92.4 87.1 88.7 89.2 88.7 89.4 88.7 85.3 86.4 83.4 84.5 86.4 82.9 86.6 86.2 87.1

Table 7: XNLI accuracy scores for each language.

Model en de es fr ja ko zh avg

Cross-lingual zero-shot transfer (models fine-tune on English data only)

mBERT 94.0 85.7 87.4 87.0 73.0 69.6 77.0 81.9
XLM 94.0 85.9 88.3 87.4 69.3 64.8 76.5 80.9
XLM-R 94.7 89.7 90.1 90.4 78.7 79.0 82.3 86.4
mT5-Small 92.2 86.2 86.1 86.6 74.7 73.5 77.9 82.4
mT5-Base 95.4 89.4 89.6 91.2 79.8 78.5 81.1 86.4
mT5-Large 96.1 91.3 92.0 92.7 82.5 82.7 84.7 88.9
mT5-XL 96.0 92.8 92.7 92.4 83.6 83.1 86.5 89.6
mT5-XXL 96.3 92.9 92.6 92.7 84.5 83.9 87.2 90.0

Translate-train (models fine-tune on English training data plus translations in all target languages)

mT5-Small 87.9 81.4 83.1 84.1 74.2 71.7 76.7 79.9
mT5-Base 95.5 90.9 91.4 92.5 83.6 84.8 86.4 89.3
mT5-Large 96.4 92.7 93.3 93.6 86.5 87.4 88.4 91.2
mT5-XL 96.4 92.5 93.1 93.6 85.5 86.9 89.0 91.0
mT5-XXL 96.1 92.9 93.6 94.2 87.0 87.9 89.0 91.5

Table 8: PAWS-X accuracy scores for each language.
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Model en af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv

Cross-lingual zero-shot transfer (models fine-tune on English data only)

mBERT 85.2 77.4 41.1 77.0 70.0 78.0 72.5 77.4 75.4 66.3 46.2 77.2 79.6 56.6 65.0 76.4 53.5 81.5 29.0 66.4
mT5-Small 80.6 67.0 36.2 59.8 60.0 66.1 54.0 63.6 58.4 42.3 25.3 64.5 74.6 39.6 57.4 61.5 46.6 73.2 28.8 49.6
mT5-Base 83.2 73.8 45.4 62.1 67.1 72.5 57.0 70.3 67.3 49.2 30.4 68.6 78.6 46.1 67.6 64.7 49.7 78.9 35.0 56.9
mT5-Large 84.2 74.7 55.0 60.6 64.5 75.2 68.2 74.2 66.4 48.4 51.4 65.8 82.4 55.8 69.0 67.3 51.1 80.6 43.0 57.1
mT5-XL 86.3 79.3 60.2 80.3 78.1 80.4 78.3 74.5 71.8 52.2 61.5 70.1 85.9 65.3 76.3 71.9 56.8 83.2 47.7 63.2
mT5-XXL 86.6 81.1 66.5 85.1 78.8 82.0 79.1 85.8 74.1 55.1 59.6 70.5 86.8 66.1 78.4 74.2 75.0 86.3 51.0 69.1

ka kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh avg

mBERT 64.6 45.8 59.6 52.3 58.2 72.7 45.2 81.8 80.8 64.0 67.5 50.7 48.5 3.6 71.7 71.8 36.9 71.8 44.9 42.7 62.2
mT5-Small 53.2 22.6 26.6 38.2 38.1 68.8 28.9 75.0 70.5 46.5 54.8 37.5 32.5 7.0 68.7 56.0 24.8 63.8 58.8 37.7 50.5
mT5-Base 49.9 22.1 33.9 45.5 43.8 68.9 36.4 80.1 76.0 53.2 62.4 40.8 41.8 8.5 74.1 58.4 38.4 72.1 56.5 41.0 55.7
mT5-Large 58.2 23.3 36.2 46.3 46.5 65.8 32.2 82.7 79.6 50.2 72.3 46.4 44.5 9.1 79.0 65.1 44.2 77.1 47.2 44.0 58.5
mT5-XL 66.0 31.6 38.1 54.1 57.6 74.5 42.6 85.5 85.2 66.9 72.8 49.0 54.7 9.6 84.1 67.4 64.7 79.6 59.0 53.9 65.5
mT5-XXL 66.1 39.2 43.2 54.1 62.8 77.4 44.1 87.6 86.8 71.4 73.1 56.5 59.4 10.2 85.1 71.6 81.2 84.6 66.4 56.9 69.2

Model en af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv

In-language multitask (models fine-tuned on gold data in all target languages)

mBERT 85.4 92.0 89.6 93.5 95.3 90.1 91.1 93.3 92.4 92.5 79.6 92.4 91.6 86.5 88.9 93.5 93.8 92.6 74.6 91.5
mT5-Small 80.8 92.1 87.8 91.9 92.8 87.2 85.5 91.6 91.4 90.2 73.7 89.2 88.8 83.5 87.9 90.9 93.1 90.1 73.0 89.4
mT5-Base 84.2 92.1 89.6 93.4 94.2 89.4 87.1 93.1 92.9 92.3 74.8 91.5 91.2 86.2 90.6 92.7 93.8 92.2 73.5 89.4
mT5-Large 86.0 93.6 91.3 94.4 94.0 91.1 88.6 93.9 94.3 94.1 76.1 93.1 92.4 88.9 92.3 94.4 95.0 93.6 75.2 92.0
mT5-XL 87.7 94.4 93.0 95.2 94.4 92.6 89.7 94.7 95.4 95.1 77.0 94.4 93.4 91.2 93.2 95.2 95.5 94.7 78.6 94.9
mT5-XXL 88.5 95.2 94.1 96.0 95.4 93.3 90.5 95.4 96.0 95.8 77.5 95.2 94.0 92.8 94.3 96.0 96.1 95.6 80.6 92.8

ka kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh avg

mBERT 88.0 88.2 89.0 84.3 88.5 94.8 78.1 93.0 93.5 89.6 91.8 86.0 82.3 75.3 94.9 93.1 94.4 92.9 84.8 82.5 89.2
mT5-Small 87.1 85.8 84.2 79.9 85.0 93.8 64.8 90.4 90.9 86.2 77.9 87.1 75.0 76.4 95.4 91.9 94.8 91.3 86.4 78.7 86.4
mT5-Base 88.8 88.7 86.1 81.8 87.2 94.7 72.2 92.3 92.4 88.2 79.4 88.4 78.1 73.9 96.4 93.1 96.0 92.3 91.9 80.6 88.2
mT5-Large 91.1 89.8 89.2 84.1 89.3 96.0 74.4 93.9 93.8 90.4 80.7 91.1 81.4 73.9 97.3 94.8 96.1 93.8 91.5 82.4 89.7
mT5-XL 92.6 91.7 91.1 85.3 91.2 95.9 84.7 94.8 94.4 91.6 80.9 92.6 84.3 78.5 98.0 95.6 97.4 94.9 93.7 85.0 91.3
mT5-XXL 93.8 94.3 92.7 86.6 93.1 97.3 83.3 95.5 95.4 92.7 83.0 93.2 86.1 79.7 98.0 96.2 97.4 95.5 93.3 86.2 92.2

Table 9: WikiAnn NER F1 scores for each language.

Model en ar de el es hi ru th tr vi zh avg

Cross-lingual zero-shot transfer (models fine-tune on English data only)

mBERT 83.5 / 72.2 61.5 / 45.1 70.6 / 54.0 62.6 / 44.9 75.5 / 56.9 59.2 / 46.0 71.3 / 53.3 42.7 / 33.5 55.4 / 40.1 69.5 / 49.6 58.0 / 48.3 64.5 / 49.4
XLM 74.2 / 62.1 61.4 / 44.7 66.0 / 49.7 57.5 / 39.1 68.2 / 49.8 56.6 / 40.3 65.3 / 48.2 35.4 / 24.5 57.9 / 41.2 65.8 / 47.6 49.7 / 39.7 59.8 / 44.3
XLM-R 86.5 / 75.7 68.6 / 49.0 80.4 / 63.4 79.8 / 61.7 82.0 / 63.9 76.7 / 59.7 80.1 / 64.3 74.2 / 62.8 75.9 / 59.3 79.1 / 59.0 59.3 / 50.0 76.6 / 60.8
mT5-Small 78.5 / 66.1 51.4 / 34.0 63.8 / 45.9 53.8 / 33.4 67.0 / 50.3 47.8 / 34.5 50.5 / 30.1 54.0 / 44.5 55.7 / 38.9 58.1 / 41.3 58.9 / 48.7 58.1 / 42.5
mT5-Base 84.6 / 71.7 63.8 / 44.3 73.8 / 54.5 59.6 / 35.6 74.8 / 56.1 60.3 / 43.4 57.8 / 34.7 57.6 / 45.7 67.9 / 48.2 70.7 / 50.3 66.1 / 54.1 67.0 / 49.0
mT5-Large 88.4 / 77.3 75.2 / 56.7 80.0 / 62.9 77.5 / 57.6 81.8 / 64.2 73.4 / 56.6 74.7 / 56.9 73.4 / 62.0 76.5 / 56.3 79.4 / 60.3 75.9 / 65.5 77.8 / 61.5
mT5-XL 88.8 / 78.1 77.4 / 60.8 80.4 / 63.5 80.4 / 61.2 82.7 / 64.5 76.1 / 60.3 76.2 / 58.8 74.2 / 62.5 77.7 / 58.4 80.5 / 60.8 80.5 / 71.0 79.5 / 63.6
mT5-XXL 90.9 / 80.1 80.3 / 62.6 83.1 / 65.5 83.3 / 65.5 85.1 / 68.1 81.7 / 65.9 79.3 / 63.6 77.8 / 66.1 80.2 / 60.9 83.1 / 63.6 83.1 / 73.4 82.5 / 66.8

Translate-train (models fine-tune on English training data plus translations in all target languages)

mT5-Small 74.0 / 61.2 61.0 / 45.0 66.0 / 50.2 64.1 / 47.2 67.5 / 50.8 60.2 / 43.7 64.4 / 46.7 58.9 / 52.9 59.0 / 39.4 63.5 / 46.0 68.2 / 61.2 64.3 / 49.5
mT5-Base 83.1 / 70.3 72.4 / 55.2 76.9 / 59.7 76.8 / 58.8 79.0 / 61.2 71.4 / 53.4 76.1 / 58.5 67.9 / 62.0 72.5 / 51.4 75.9 / 56.3 76.9 / 69.7 75.3 / 59.7
mT5-Large 87.3 / 75.5 79.4 / 62.7 82.7 / 66.0 81.8 / 63.5 83.8 / 66.1 78.0 / 59.8 81.9 / 66.3 74.7 / 68.2 80.2 / 59.2 80.4 / 60.8 83.2 / 76.9 81.2 / 65.9
mT5-XL 88.5 / 77.1 80.9 / 65.4 83.4 / 66.7 83.6 / 64.9 84.9 / 68.2 79.6 / 63.1 82.7 / 67.1 78.5 / 72.9 82.4 / 63.8 82.4 / 64.1 83.2 / 75.9 82.7 / 68.1
mT5-XXL 91.3 / 80.3 83.4 / 68.2 85.0 / 68.2 85.9 / 68.9 87.4 / 70.8 83.7 / 68.2 85.2 / 70.4 80.2 / 74.5 84.4 / 67.7 85.3 / 67.1 85.7 / 80.0 85.2 / 71.3

Table 10: XQuAD results (F1/EM) for each language.

Model en ar de es hi vi zh avg

Cross-lingual zero-shot transfer (models fine-tune on English data only)

mBERT 80.2 / 67.0 52.3 / 34.6 59.0 / 43.8 67.4 / 49.2 50.2 / 35.3 61.2 / 40.7 59.6 / 38.6 61.4 / 44.2
XLM 68.6 / 55.2 42.5 / 25.2 50.8 / 37.2 54.7 / 37.9 34.4 / 21.1 48.3 / 30.2 40.5 / 21.9 48.5 / 32.6
XLM-R 83.5 / 70.6 66.6 / 47.1 70.1 / 54.9 74.1 / 56.6 70.6 / 53.1 74.0 / 52.9 62.1 / 37.0 71.6 / 53.2
mT5-Small 77.2 / 63.0 44.7 / 27.3 53.3 / 35.7 60.1 / 41.5 43.0 / 29.2 52.9 / 33.2 51.3 / 29.7 54.6 / 37.1
mT5-Base 81.7 / 66.9 57.1 / 36.9 62.1 / 43.2 67.1 / 47.2 55.4 / 37.9 65.9 / 44.1 61.6 / 38.6 64.4 / 45.0
mT5-Large 84.9 / 70.7 65.3 / 44.6 68.9 / 51.8 73.5 / 54.1 66.9 / 47.7 72.5 / 50.7 66.2 / 42.0 71.2 / 51.7
mT5-XL 85.5 / 71.9 68.0 / 47.4 70.5 / 54.4 75.2 / 56.3 70.5 / 51.0 74.2 / 52.8 70.5 / 47.2 73.5 / 54.4
mT5-XXL 86.7 / 73.5 70.7 / 50.4 74.0 / 57.8 76.8 / 58.4 75.6 / 57.3 76.4 / 56.0 71.8 / 48.8 76.0 / 57.4

Translate-train (models fine-tune on English training data plus translations in all target languages)

mT5-Small 70.5 / 56.2 49.3 / 31.0 55.6 / 40.6 60.5 / 43.0 50.4 / 32.9 55.2 / 36.3 54.4 / 31.6 56.6 / 38.8
mT5-Base 80.7 / 66.3 61.1 / 40.7 65.5 / 49.2 70.7 / 52.1 63.6 / 44.3 68.0 / 47.6 63.5 / 39.4 67.6 / 48.5
mT5-Large 85.3 / 72.0 68.5 / 47.7 71.6 / 55.8 75.7 / 57.1 71.8 / 52.6 74.3 / 54.0 70.1 / 47.1 73.9 / 55.2
mT5-XL 86.0 / 73.0 70.0 / 49.8 72.7 / 56.8 76.9 / 58.3 73.4 / 55.0 75.4 / 55.0 71.4 / 48.4 75.1 / 56.6
mT5-XXL 86.5 / 73.5 71.7 / 51.4 74.9 / 58.7 78.8 / 60.3 76.6 / 58.5 77.1 / 56.3 72.5 / 49.8 76.9 / 58.3

Table 11: MLQA results (F1/EM) for each language.
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Model en ar bn fi id ko ru sw te avg

Cross-lingual zero-shot transfer (models fine-tune on English data only)

mBERT 75.3 / 63.6 62.2 / 42.8 49.3 / 32.7 59.7 / 45.3 64.8 / 45.8 58.8 / 50.0 60.0 / 38.8 57.5 / 37.9 49.6 / 38.4 59.7 / 43.9
XLM 66.9 / 53.9 59.4 / 41.2 27.2 / 15.0 58.2 / 41.4 62.5 / 45.8 14.2 / 5.1 49.2 / 30.7 39.4 / 21.6 15.5 / 6.9 43.6 / 29.1
XLM-R 71.5 / 56.8 67.6 / 40.4 64.0 / 47.8 70.5 / 53.2 77.4 / 61.9 31.9 / 10.9 67.0 / 42.1 66.1 / 48.1 70.1 / 43.6 65.1 / 45.0
mT5-small 58.9 / 48.2 44.3 / 28.2 18.2 / 9.7 42.0 / 25.8 46.4 / 32.0 27.5 / 18.5 43.7 / 27.5 35.4 / 22.8 16.1 / 10.5 36.9 / 24.8
mT5-Base 72.8 / 60.2 68.9 / 50.3 44.9 / 28.3 67.9 / 53.1 73.3 / 55.2 48.6 / 34.4 58.0 / 35.7 59.9 / 42.5 46.2 / 34.1 60.0 / 43.8
mT5-Large 75.1 / 63.0 67.2 / 45.9 51.9 / 31.9 69.6 / 53.1 72.5 / 55.9 57.4 / 44.2 62.8 / 37.9 71.2 / 51.7 65.0 / 46.3 65.8 / 47.8
mT5-XL 79.6 / 68.9 82.4 / 65.9 72.8 / 54.9 79.9 / 65.7 82.6 / 68.5 68.3 / 57.6 73.9 / 49.5 77.3 / 59.7 79.1 / 60.2 77.3 / 61.2
mT5-XXL 84.5 / 73.2 84.6 / 68.8 82.5 / 70.8 82.8 / 70.1 85.8 / 73.3 77.2 / 66.3 77.4 / 57.0 83.8 / 69.7 79.6 / 59.8 82.0 / 67.7

Translate-train (models fine-tune on English training data plus translations in all target languages)

mT5-Small 58.2 / 47.3 55.9 / 39.3 40.3 / 23.0 51.7 / 37.9 62.2 / 46.0 41.5 / 30.8 51.6 / 35.0 51.8 / 37.1 34.8 / 24.2 49.8 / 35.6
mT5-Base 71.0 / 59.1 71.8 / 55.5 56.8 / 36.3 71.5 / 58.8 76.8 / 60.5 61.5 / 49.3 66.1 / 47.5 67.0 / 50.7 55.3 / 41.7 66.4 / 51.0
mT5-Large 77.2 / 65.7 80.3 / 64.1 71.8 / 54.9 75.9 / 61.3 81.7 / 68.0 69.7 / 56.9 75.0 / 56.8 76.9 / 60.3 73.1 / 53.1 75.7 / 60.1
mT5-XL 81.7 / 68.9 82.1 / 66.0 79.0 / 64.6 79.5 / 65.3 84.9 / 71.2 71.8 / 57.6 78.7 / 60.6 82.4 / 67.3 80.8 / 63.8 80.1 / 65.0
mT5-XXL 83.3 / 72.3 83.9 / 66.6 83.3 / 71.7 83.0 / 69.1 85.9 / 71.5 77.6 / 63.4 81.1 / 64.4 86.0 / 75.4 85.2 / 70.7 83.3 / 69.4

In-language multitask (models fine-tuned on gold data in all target languages)

mT5-Small 67.8 / 57.0 79.5 / 67.2 73.1 / 59.3 72.3 / 59.5 78.7 / 67.8 59.1 / 51.1 71.2 / 58.0 79.1 / 70.9 84.1 / 72.5 74.0 / 62.7
mT5-Base 74.6 / 63.2 82.8 / 69.7 79.7 / 67.3 78.5 / 66.4 84.9 / 73.5 70.7 / 62.7 76.1 / 62.3 81.7 / 72.5 87.2 / 77.4 79.7 / 68.4
mT5-Large 81.9 / 71.1 87.3 / 75.6 86.7 / 79.6 85.1 / 73.5 87.3 / 77.5 79.2 / 70.3 83.5 / 70.2 85.8 / 78.0 90.6 / 81.9 85.3 / 75.3
mT5-XL 83.8 / 74.3 88.4 / 76.7 88.7 / 83.2 86.7 / 75.6 90.1 / 81.4 82.9 / 74.6 85.3 / 73.2 90.1 / 82.8 92.4 / 84.0 87.6 / 78.4
mT5-XXL 85.4 / 75.2 89.4 / 77.6 90.3 / 85.0 87.7 / 77.1 90.7 / 82.8 84.2 / 75.0 86.9 / 75.5 90.8 / 83.6 92.4 / 83.7 88.7 / 79.5
(Human) 84.2 / - 85.8 / - 94.8 / - 87.0 / - 92.0 / - 82.0 / - 96.3 / - 92.0 / - 97.1 / - 90.1 / -

Table 12: TyDi QA GoldP results (F1/EM) for each language.



498

C Per-Language Results of Ablation Models

Model ar bg de el en es fr hi ru sw th tr ur vi zh avg

Baseline (mT5-Large) 79.8 84.1 83.4 83.2 89.4 84.2 84.1 77.6 81.5 75.4 79.4 80.1 73.5 81.0 80.3 81.1
Dropout 0.1 76.4 82.1 81.7 81.0 88.0 70.8 80.3 74.4 79.0 72.3 75.8 75.9 70.6 78.6 76.5 77.6
Sequence length 512 78.1 83.4 83.1 82.1 88.8 84.5 82.8 77.3 81.2 75.4 78.2 79.6 73.8 80.0 78.9 80.5
Span length 10 77.6 81.5 80.5 81.2 87.2 83.0 81.2 74.7 79.8 73.6 76.7 75.9 71.3 78.6 76.5 78.6
α = 0.7 79.3 84.1 84.5 83.1 89.4 85.3 84.4 76.4 82.8 70.6 78.7 79.8 71.7 80.3 79.9 80.7
α = 0.2 78.7 83.8 83.3 82.5 89.3 83.4 83.6 77.3 81.2 75.4 78.6 79.4 73.9 79.9 79.7 80.7
No line length filter 78.4 83.3 81.5 81.4 88.9 83.8 82.5 74.4 80.5 69.4 77.6 76.9 71.3 78.8 78.3 79.1
Add Wikipedia data 79.3 83.1 83.1 82.7 88.6 80.1 83.2 77.3 81.4 75.0 78.9 79.3 73.5 80.2 79.2 80.3

Table 13: XNLI zero-shot accuracy of various ablations on our mT5-Large model.

Model en ar de el es hi ru th tr vi zh avg

Baseline (mT5-Large) 88.4 / 77.3 75.2 / 56.7 80.0 / 62.9 77.5 / 57.6 81.8 / 64.2 73.4 / 56.6 74.7 / 56.9 73.4 / 62.0 76.5 / 56.3 79.4 / 60.3 75.9 / 65.5 77.8 / 61.5
Span length 10 88.1 / 76.3 70.0 / 50.6 78.1 / 60.2 68.8 / 44.0 79.0 / 60.8 67.3 / 48.4 65.4 / 43.3 68.1 / 57.2 74.4 / 53.6 77.9 / 57.7 76.6 / 66.4 74.0 / 56.2
Dropout 0.1 87.3 / 76.0 54.9 / 33.9 77.6 / 60.2 64.4 / 40.1 79.2 / 60.6 59.1 / 40.4 59.5 / 38.4 65.7 / 51.0 73.6 / 52.8 75.8 / 55.8 77.0 / 64.5 70.4 / 52.1
Sequence length 512 88.0 / 76.9 77.0 / 59.6 80.2 / 62.4 79.8 / 60.0 81.7 / 64.4 75.1 / 57.5 77.4 / 58.5 72.7 / 59.8 75.3 / 53.9 79.4 / 58.9 78.5 / 67.2 78.6 / 61.7
α = 0.7 88.4 / 77.1 76.5 / 58.8 78.5 / 59.8 77.2 / 55.5 78.7 / 59.5 74.6 / 56.8 73.1 / 54.5 72.5 / 60.2 75.7 / 55.0 79.2 / 58.3 78.6 / 66.2 77.5 / 60.2
α = 0.2 87.9 / 76.8 75.5 / 57.3 80.2 / 62.4 76.2 / 54.0 81.6 / 63.7 73.7 / 57.0 70.7 / 50.8 72.2 / 60.4 75.5 / 55.7 79.7 / 59.7 78.3 / 67.5 77.4 / 60.5
No line length filter 88.9 / 77.4 73.8 / 54.0 80.8 / 62.7 74.2 / 51.8 80.9 / 62.8 74.1 / 56.6 75.0 / 56.4 71.7 / 60.3 76.7 / 56.0 78.8 / 58.6 78.5 / 67.1 77.6 / 60.3
Add Wikipedia data 89.3 / 78.4 69.6 / 48.9 79.6 / 61.1 59.5 / 36.0 80.6 / 61.0 73.6 / 55.0 68.7 / 47.0 70.5 / 58.1 76.7 / 56.9 78.6 / 56.4 77.5 / 66.3 74.9 / 56.8

Table 14: XQuAD zero-shot F1/EM of various ablations on our mT5-Large model.


