@inproceedings{chen-etal-2021-jointly,
title = "Jointly Extracting Explicit and Implicit Relational Triples with Reasoning Pattern Enhanced Binary Pointer Network",
author = "Chen, Yubo and
Zhang, Yunqi and
Hu, Changran and
Huang, Yongfeng",
editor = "Toutanova, Kristina and
Rumshisky, Anna and
Zettlemoyer, Luke and
Hakkani-Tur, Dilek and
Beltagy, Iz and
Bethard, Steven and
Cotterell, Ryan and
Chakraborty, Tanmoy and
Zhou, Yichao",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.453",
doi = "10.18653/v1/2021.naacl-main.453",
pages = "5694--5703",
abstract = "Relational triple extraction is a crucial task for knowledge graph construction. Existing methods mainly focused on explicit relational triples that are directly expressed, but usually suffer from ignoring implicit triples that lack explicit expressions. This will lead to serious incompleteness of the constructed knowledge graphs. Fortunately, other triples in the sentence provide supplementary information for discovering entity pairs that may have implicit relations. Also, the relation types between the implicitly connected entity pairs can be identified with relational reasoning patterns in the real world. In this paper, we propose a unified framework to jointly extract explicit and implicit relational triples. To explore entity pairs that may be implicitly connected by relations, we propose a binary pointer network to extract overlapping relational triples relevant to each word sequentially and retain the information of previously extracted triples in an external memory. To infer the relation types of implicit relational triples, we propose to introduce real-world relational reasoning patterns in our model and capture these patterns with a relation network. We conduct experiments on several benchmark datasets, and the results prove the validity of our method.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2021-jointly">
<titleInfo>
<title>Jointly Extracting Explicit and Implicit Relational Triples with Reasoning Pattern Enhanced Binary Pointer Network</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yubo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunqi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Changran</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongfeng</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristina</namePart>
<namePart type="family">Toutanova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iz</namePart>
<namePart type="family">Beltagy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Relational triple extraction is a crucial task for knowledge graph construction. Existing methods mainly focused on explicit relational triples that are directly expressed, but usually suffer from ignoring implicit triples that lack explicit expressions. This will lead to serious incompleteness of the constructed knowledge graphs. Fortunately, other triples in the sentence provide supplementary information for discovering entity pairs that may have implicit relations. Also, the relation types between the implicitly connected entity pairs can be identified with relational reasoning patterns in the real world. In this paper, we propose a unified framework to jointly extract explicit and implicit relational triples. To explore entity pairs that may be implicitly connected by relations, we propose a binary pointer network to extract overlapping relational triples relevant to each word sequentially and retain the information of previously extracted triples in an external memory. To infer the relation types of implicit relational triples, we propose to introduce real-world relational reasoning patterns in our model and capture these patterns with a relation network. We conduct experiments on several benchmark datasets, and the results prove the validity of our method.</abstract>
<identifier type="citekey">chen-etal-2021-jointly</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-main.453</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-main.453</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>5694</start>
<end>5703</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Jointly Extracting Explicit and Implicit Relational Triples with Reasoning Pattern Enhanced Binary Pointer Network
%A Chen, Yubo
%A Zhang, Yunqi
%A Hu, Changran
%A Huang, Yongfeng
%Y Toutanova, Kristina
%Y Rumshisky, Anna
%Y Zettlemoyer, Luke
%Y Hakkani-Tur, Dilek
%Y Beltagy, Iz
%Y Bethard, Steven
%Y Cotterell, Ryan
%Y Chakraborty, Tanmoy
%Y Zhou, Yichao
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F chen-etal-2021-jointly
%X Relational triple extraction is a crucial task for knowledge graph construction. Existing methods mainly focused on explicit relational triples that are directly expressed, but usually suffer from ignoring implicit triples that lack explicit expressions. This will lead to serious incompleteness of the constructed knowledge graphs. Fortunately, other triples in the sentence provide supplementary information for discovering entity pairs that may have implicit relations. Also, the relation types between the implicitly connected entity pairs can be identified with relational reasoning patterns in the real world. In this paper, we propose a unified framework to jointly extract explicit and implicit relational triples. To explore entity pairs that may be implicitly connected by relations, we propose a binary pointer network to extract overlapping relational triples relevant to each word sequentially and retain the information of previously extracted triples in an external memory. To infer the relation types of implicit relational triples, we propose to introduce real-world relational reasoning patterns in our model and capture these patterns with a relation network. We conduct experiments on several benchmark datasets, and the results prove the validity of our method.
%R 10.18653/v1/2021.naacl-main.453
%U https://aclanthology.org/2021.naacl-main.453
%U https://doi.org/10.18653/v1/2021.naacl-main.453
%P 5694-5703
Markdown (Informal)
[Jointly Extracting Explicit and Implicit Relational Triples with Reasoning Pattern Enhanced Binary Pointer Network](https://aclanthology.org/2021.naacl-main.453) (Chen et al., NAACL 2021)
ACL