


Legal Area standard long hierarchical

Legal Area # cases approval rate Micro-F1↑ Macro-F1↑ Micro-F1↑ Macro-F1↑ Micro-F1↑ Macro-F1↑

public law 2587 20.6% 66.6 ± 6.2 53.1 ± 1.8 64.6 ± 6.7 53.8 ± 2.1 64.8 ± 8.1 53.7 ± 3.0
penal law 2900 21.0% 83.6 ± 1.8 74.8 ± 1.5 87.6 ± 1.6 81.1 ± 2.3 88.4 ± 1.0 82.6 ± 2.5
social law 661 19.3% 71.1 ± 4.3 65.2 ± 2.6 74.8 ± 4.0 69.1 ± 2.8 75.4 ± 3.9 69.4 ± 2.5
civil law 1574 16.5% 73.6 ± 4.8 55.5 ± 1.0 79.0 ± 3.4 65.1 ± 2.4 78.9 ± 3.8 65.9 ± 2.8

Table 6: We used the German native BERT model pre-trained and evaluated on the German data. In the German
test set there are no insurance law cases and only 3 cases with other legal areas. The area where models perform
best is in bold and the area where they perform worst is underlined.
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Figure 2: This table compares the different BERT types
on cases from different years. We used the native Ger-
man BERT model.

Figure 3: This table compares the different long BERT
types on different input (text) lengths. We used the na-
tive German BERT model.

5.3.1 Diachronicity
In Figure 2, we present the results grouped by years
in the test set (2017-2020). We cannot identify a
notable fluctuation in performance across years
as there is a very small decrease in performance
(approx. -2% in Macro-F1); most probably be-
cause the testing time-frame is really short (4 years).
Comparing the performance between the validation
(2015-2016) and the test (2017-2020) set (approx.
70% vs. 68.5%), again we do not observe an ex-
ceptional fluctuation time-wise.

5.3.2 Input (Text) Length
In Figure 3, we observe that model performance
deteriorates as input (text) length increases, i.e.,
there is an absolute negative correlation between
performance and input (text) length. The two vari-
ants of BERT improve results, especially in cases
with 512 to 2048 tokens. Since the two variants of
BERT have a maximum length of 2048 they per-
form similar to the standard BERT type in cases
longer than 2048 tokens.

5.3.3 Legal Area
In Table 6, we observe that the models do not
equally perform across legal areas. All models
seem to be much more accurate in penal law cases,
while the performance is much worse (approx.
30%) in public law cases. According to the ex-
perts, the jurisprudence in penal law is more united
and aligned in Switzerland and outlier judgments
are rarer making the task more predictable. Addi-
tionally, in the case of not enough evidence the prin-
ciple of “in dubio pro reo” (reasonable doubt) is
applied. 16 Another possible reason for the higher
performance in penal law could be the increased
work performed by the legal clerks in drafting the
facts of the case (see Section 3.2.1), thus including
more useful information relevant to the task.

5.3.4 Canton of Origin
In Figure 4, we observe a performance disparity
across cantons, although this is neither correlated
with the number of cases per canton, nor with the
dismissal/approval rate per canton. Thus, the dis-
parity is either purely coincidental and has to do
with the difficulty of particular cases in some can-
tons or there are other factors (e.g., societal, eco-
nomics) worth considering in future work.

16The principle of “in dubio pro reo”, i.e., “When in doubt,
in favor of the defendant.”, is only applicable in penal law
cases.
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Figure 4: This table compares the different long BERT types on different origin cantons. We used the native French
BERT model. The cantons are sorted by the number of cases in the training set descending.

6 Conclusions & Future Work

We introduced a new multilingual, diachronic
dataset of 85K Swiss Federal Supreme Court
(FSCS) cases, including cases in German, French,
and Italian. We presented results considering three
alternative BERT-based methods, including meth-
ods that can process up to 2048 tokens and thus
can read the entirety of the facts in most cases. We
found that these methods outperform the standard
BERT models and have the best results in Macro-
F1, while the naive majority classifier has the best
overall results in Micro-F1 due to the high class
imbalance of the dataset (more than 3

4 of the cases
are dismissed). Further on, we presented a bivariate
analysis between performance and multiple factors
(diachronicity, input (text) length, legal area, and
canton of origin). The analysis showed that perfor-
mance deteriorates as input (text) length increases,
while the results in cases from different legal ar-
eas or cantons vary raising questions on models’
robustness under different attributes.

In future work, we would like to investigate the
application of cross-lingual transfer learning tech-
niques, for example the use of Adapters (Houlsby
et al., 2019; Pfeiffer et al., 2020). In this case, we
could possibly improve the poor performance in the
Italian subset, where approx. 3K cases exists, by
training a multilingual model across all languages,
thus exploiting all available resources, ignoring the
traditional language barrier. In the same direction,
we could also exploit and transfer knowledge from
other annotated datasets that aim at the LJP task
(e.g., ECtHR and SCOTUS).

More in depth analysis on robustness is also an
interesting future avenue. In this direction, we
would like to explore distributional robust optimiza-
tion (DRO) techniques (Koh et al., 2021; Wang
et al., 2021) that aim to mitigate disparities across

groups of interest, i.e., labels, cantons and/or legal
areas could be both considered in this framework.

Another interesting direction is a deeper analysis
with models handling long textual input (Beltagy
et al., 2020; Zaheer et al., 2020) using alternative at-
tention schemes (window-based, dilated, etc.). Fur-
thermore, none of the examined pre-trained models
is legal-oriented, thus pre-training and evaluating
such specialized models is also needed, similarly to
the English Legal-BERT of Chalkidis et al. (2020).

Ethics Statement

The scope of this work is not to produce a robot
lawyer, but rather to study LJP in order to broaden
the discussion and help practitioners to build assist-
ing technology for legal professionals. We believe
that this is an important application field, where
research should be conducted (Tsarapatsanis and
Aletras, 2021) to improve legal services and de-
mocratize law, while also highlight (inform the au-
dience on) the various multi-aspect shortcomings
seeking a responsible and ethical (fair) deployment
of technology. In this direction, we provide a well-
documented public resource for three languages
(German, French, and Italian) that are underrep-
resented in legal NLP literature. We also provide
annotations for several attributes (year of publi-
cation, legal area, canton/region) and provide a
bivariate analysis discussing the shortcomings to
further promote new studies in terms of fairness
and robustness (Wang et al., 2021), a critical part
of NLP application in law. All decisions (original
material) are publicly available on the entscheid-
suche.ch platform and the names of the parties have
been redacted (See Figures 5 and 6) by the court
according to its official guidelines17.

17https://tinyurl.com/mtu23szy (In German)

https://tinyurl.com/mtu23szy
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A Training Effort

Type BERT RoBERTa

standard 3.377E+11 3.398E+11
long 1.365E+12 1.374E+12
hierarchical 1.476E+12 1.477E+12

Table 7: This table shows the total floating point op-
erations per epoch per training example used for train-
ing each type. Each model has been trained for 2 to
4 epochs (variable because of early stopping). This ta-
ble can be used to choose a suitable model with limited
resources. Additionally, it can be used to measure the
environmental impact.

Table 7 shows the training effort required for
finetuning each type. Training one of the types
capable of handling long input results in 4 to 5
times more training operations compared to the
standard model. This seems justifiable since the
gain from the longer models in terms of F1 score
is considerable. Also, the entire cost of finetuning
is relatively small.

B Examples

In this appendix we show some examples of court
decisions with their respective labels. Figure 5
shows an example of a dismissed decision and Fig-
ure 6 an example of an approved decision. Both
decisions are relatively short, but still contain all
sections (rubrum, facts, considerations and judg-
ments). They are both very recent, dating from
2019 and 2017 respectively.

C Input Length Distribution

In this appendix we show the input length distribu-
tions for the German (Figure 7) and Italian (Figure
8) datasets. We observe that the average Italian
decision is longer than the average German deci-
sion. Additionally, there is also a higher density in
moderately long decisions (over 1000 tokens) and
there are many more decisions over 4000 tokens.
Apart from the availability of more training data in
the German dataset, the shorter decisions may also
be an important factor in the better performance we
see in most models trained on the German dataset
in comparison to the Italian case and to some extent
the French case (see Table 5).

D Tables to Plots

In this appendix, we show tables belonging to plots
in the main paper to show the exact numbers. Table
8 shows the results regarding the different input
lengths. Table 9 shows the results regarding differ-
ent years in the test set. Table 10 shows the model
performance across different cantons.

E Training with Class Weights

In this appendix we show the results of training the
models with class weights instead of oversampling.
Table 11 shows the training results. We notice, that
for many configurations (especially with XLM-R),
the model only learns the majority classifier. This
leads to a very low Macro-F1 score. We also ex-
perimented with undersampling as an alternative to
oversampling, but saw similar results to the training
with class weights.

F Classifier Confidence

In this appendix, we discuss the reliability of the
confidence scores of the classifier output along-
side the predictions. The confidence scores are
computed by taking the softmax on the classifier
outputs, so that we get a probability (confidence)
score of a given class between 0 and 100. The hier-
archical and long BERT types show an increase in
both the confidence in the correct predictions and
the incorrect predictions compared to the standard
BERT type (with the increase in the correct predic-
tions being more pronounced). This finding holds
across all three languages.
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Model standard long hierarchical

Micro-F1↑ Macro-F1↑ Micro-F1↑ Macro-F1↑ Micro-F1↑ Macro-F1↑

1-512 (5479 decisions) 81.1 ± 2.7 72.1 ± 1.6 80.8 ± 2.5 72.2 ± 1.3 39.3 ± 37.2 25.1 ± 17.4
513-1024 (3364 decisions) 65.3 ± 6.2 65.3 ± 6.2 71.8 ± 5.4 63.4 ± 2.8 43.3 ± 30.8 30.5 ± 13.2
1025-2048 (788 decisions) 63.8 ± 4.9 50.7 ± 1.0 69.1 ± 5.4 60.2 ± 2.8 54.9 ± 26.7 37.2 ± 15.3
2049-4096 (82 decisions) 64.9 ± 6.7 47.3 ± 2.2 65.1 ± 9.2 50.9 ± 3.6 60.2 ± 13.3 48.0 ± 5.4
4097-8192 (12 decisions) 56.7 ± 7.0 36.1 ± 2.8 50.0 ± 10.2 33.1 ± 4.8 50.0 ± 11.8 34.7 ± 5.4

Table 8: Results on the German data grouped by text length. Performance deteriorates as text length is increased.

Model standard long hierarchical

Micro-F1↑ Macro-F1↑ Micro-F1↑ Macro-F1↑ Micro-F1↑ Macro-F1↑

2017 73.9 ± 4.2 64.2 ± 2.1 77.1 ± 3.9 69.1 ± 2.4 77.4 ± 3.9 69.5 ± 2.6
2018 74.2 ± 3.8 63.3 ± 1.2 76.6 ± 3.7 67.1 ± 1.8 76.7 ± 4.0 67.6 ± 1.9
2019 74.5 ± 4.0 64.8 ± 1.9 76.0 ± 3.7 67.5 ± 1.7 76.9 ± 3.8 68.3 ± 1.6
2020 73.5 ± 4.2 62.4 ± 1.6 76.6 ± 3.4 67.8 ± 1.8 77.4 ± 3.1 68.5 ± 1.5

Table 9: We used the German native BERT model pretrained and evaluated on the German data.

Canton standard long hierarchical

Canton # cases approval rate Micro-F1↑ Macro-F1↑ Micro-F1↑ Macro-F1↑ Micro-F1↑ Macro-F1↑

Berne (BE) 332 9.5% 79.4 ± 4.6 48.2 ± 7.7 78.7 ± 4.7 59.9 ± 2.6 78.5 ± 2.7 59.2 ± 3.4
Fribourg (FR) 1121 14.7% 76.7 ± 3.1 61.1 ± 1.2 75.8 ± 5.2 64.7 ± 3.6 79.5 ± 3.4 68.1 ± 2.6
Vaud (VD) 5684 17.0% 76.0 ± 1.8 58.8 ± 1.4 78.9 ± 3.0 68.7 ± 1.6 82.5 ± 1.7 71.1 ± 1.4
Valais (VS) 1399 20.6% 75.1 ± 1.0 52.4 ± 2.6 75.0 ± 2.6 63.7 ± 1.2 76.1 ± 3.3 64.0 ± 2.6
Neuchâtel (NE) 1226 14.9% 76.2 ± 3.6 57.4 ± 2.9 79.0 ± 3.9 68.0 ± 2.2 82.3 ± 2.7 70.8 ± 2.9
Genève (GE) 6017 21.8% 72.0 ± 3.1 59.4 ± 0.9 76.0 ± 3.3 69.4 ± 2.0 79.4 ± 2.3 71.8 ± 1.7
Jura (JU) 425 15.7% 80.1 ± 3.2 66.3 ± 2.8 78.9 ± 5.8 69.0 ± 5.1 83.8 ± 4.3 74.2 ± 4.5
Swiss Confederation (CH) 227 26.7% 70.0 ± 2.7 50.0 ± 4.9 72.0 ± 8.7 66.6 ± 7.9 73.3 ± 4.4 65.5 ± 5.8

Table 10: We used the French native BERT model pretrained and evaluated on the French data. The number of
cases is counted on the training set per canton. The approval rate is calculated on the test set.

Model de fr it

Micro-F1↑ Macro-F1↑ Micro-F1↑ Macro-F1↑ Micro-F1↑ Macro-F1↑

baselines
Most Frequent 80.3 44.5 81.5 44.9 81.3 44.8
Stratified 66.7 ± 0.3 50 ± 0.4 66.3 ± 0.2 50 ± 0.4 69.9 ± 1.8 48.8 ± 2.4
Uniform 50 ± 0.3 44.8 ± 0.4 50 ± 0.6 44.5 ± 0.5 49.7 ± 2.4 44 ± 2.3
standard
Native BERT 71.1 ± 3.3 62.6 ± 1.6 72.8 ± 5.5 58.2 ± 1.2 67 ± 13.1 49.4 ± 5.1
XLM-RoBERTa 77.8 ± 6.3 47.3 ± 6.3 76.1 ± 7.4 48.4 ± 4.9 80.4 ± 1.9 44.7 ± 0.4
long
Native BERT 81.9 ± 1.2 69.5 ± 0.9 81.8 ± 1.5 69.4 ± 1.7 80.2 ± 1.4 46.1 ± 2.2
XLM-RoBERTa 81.5 ± 0.7 59.4 ± 9.6 81.5 ± 0.5 51.3 ± 8.8 81.3 44.8
hierarchical
Native BERT 78.6 ± 2.1 69.2 ± 0.6 79.3 ± 0.8 70 ± 0.7 80.6 ± 1.1 50.5 ± 6.5
XLM-RoBERTa 80.3 44.5 80.3 ± 1.8 49.6 ± 9.8 81.3 44.8

Table 11: All the models have been trained and evaluated in the same language. With Native BERT we mean
the BERT model pretrained in the respective language. The Most Frequent baseline just selects the majority class
always. The Stratified baseline predicts randomly, respecting the training distribution. The best scores for each
language are in bold. To combat label imbalance, we weighted the minority class samples more in the loss function.
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Model de fr it

Correct↑ Incorrect↓ Correct↑ Incorrect↓ Correct↑ Incorrect↓

standard 75.8 ± 13.6 64.7 ± 10.6 71.9 ± 12.2 64.4 ± 9.8 77.6 ± 12.2 68.3 ± 11.3
long 78.9 ± 12.2 65.8 ± 10.9 78.3 ± 11.6 67.8 ± 11.0 81.2 ± 11.2 68.4 ± 10.5
hierarchical 86.6 ± 15.9 69.3 ± 13.6 85.9 ± 15.2 70.8 ± 13.9 88.7 ± 14.7 71.4 ± 13.4

Table 12: This table shows the average confidence scores (0-100) of the different types of multilingual BERT
models on the test set for correct and incorrect predictions respectively. Both the mean and standard deviation are
averaged over 5 random seeds. The model has been finetuned on the entire dataset (all languages) and evaluated
on the respective language.
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Figure 5: This is an example of a dismissed decision:
https://tinyurl.com/n44hathc

Figure 6: This is an example of an approved decision:
https://tinyurl.com/mjxfjn65

https://tinyurl.com/n44hathc
https://tinyurl.com/mjxfjn65
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Figure 7: This histogram shows the distribution of the input length for German decisions. The blue histogram is
generated from tokens generated by the spacy tokenizer (regular words). The orange histogram is generated from
tokens generated by the SentencePiece tokenizer used in BERT (subword units). Decisions with length over 4000
tokens are grouped in the last bin (before 4000).

Figure 8: This histogram shows the distribution of the input length for Italian decisions. The blue histogram is
generated from tokens generated by the spacy tokenizer (regular words). The orange histogram is generated from
tokens generated by the SentencePiece tokenizer used in BERT (subword units). Decisions with length over 4000
tokens are grouped in the last bin (before 4000).


