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Abstract

Large-scale auto-regressive models have
achieved great success in dialogue response
generation, with the help of Transformer
layers. However, these models do not learn
a representative latent space of the sentence
distribution, making it hard to control the
generation. Recent works have tried to learn
sentence representations using Transformer-
based framework, but do not model the
context-response relationship embedded
in the dialogue datasets. In this work, we
aim to construct a robust sentence represen-
tation learning model, that is specifically
designed for dialogue response generation,
with Transformer-based encoder-decoder
structure. An utterance-level contrastive
learning is proposed, encoding predictive
information in each context representation
for its corresponding response. Extensive
experiments are conducted to verify the
robustness of the proposed representation
learning mechanism. By using both reference-
based and reference-free evaluation metrics,
we provide detailed analysis on the generated
sentences, demonstrating the effectiveness of
our proposed model.

1 Introduction

Large-scale pretrained language models with
Transformer-based architecture (Radford et al.,
2019; Raffel et al., 2019; Zhang et al., 2019) have
achieved state-of-the-art performance across a vari-
ety of natural language processing (NLP) tasks, in-
cluding open-domain dialogue response generation.
The majority of these models are auto-regressive
(AR) language models, creating a matching mech-
anism between the input context and the gener-
ated response. However, such an approach often
ignores the semantic meaning shared among sen-
tences from an abstract level (Li et al., 2020), gen-
erating responses that have matching components
with the context, but are not logically sound. Fig-

Figure 1: Faulty generated sentences based on given
context, via AR-based models. The provided dia-
logue is based on speakers ‘A’ and ‘B’. Three model
generated samples are given. Each pair of matching
words/components are marked in the same color. The
Ground Truth Response is provided for comparison.

ure 1 demonstrates this potential problem by us-
ing some generated samples, where the response
generation model generates similar patterns to the
context but fail to predict semantically reasonable
responses to continue the conversation.

In comparison, variational autoencoders
(VAEs) (Kingma and Welling, 2013; Zhao et al.,
2017; Gu et al., 2018) are able to explicitly model
sentences in a representation space, providing
control on the generated responses. While most
VAE-based language models adopt shallow
network such as LSTMs, it is straightforward to
construct such a latent representation learning
with a Transformer framework. Recent works (Li
et al., 2020) aim to build a pretrained language
model that uses a sentence-level VAE objective
with a BERT (Devlin et al., 2018) encoder
and a GPT-2 (Radford et al., 2019) decoder.
Nevertheless, being designed for multiple language
understanding and generation tasks, they do not
utilize the enriched context-response relationship
in the dialogue response generation task. (Maybe
change to something like this: Nevertheless,
these models are unable to utilize the enriched
context-response relationship in the dialogue.
This limits the model ability to capture predictive
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relationship between context and response latent
representations and hence constrains the response
generation quality. )

In this work, we aim to design a dialogue re-
sponse understanding and generation framework,
that combines a higher-level sentence representa-
tion learning with a Transformer-based encoder-
decoder architecture, yielding controllable re-
sponse generation from an abstract level, while
achieving top-tier generation quality. We adopt the
approach that uses a BERT encoder and a GPT-2
decoder as the model backbone, and enrich the un-
derlying information in the learned representation
by performing utterance-level contrastive learning.
Specifically, the latent representation of the context
input (one or multiple utterances) is used to predict
that of the response input (a single utterance). Note
that our proposed contrastive loss is built based
upon utterances, while the entire context input is
encoded by a single context encoder.

To benefit the contrastive learning of the latent
representation, we propose to use the hard nega-
tive sampling mechanism. Such an approach has
been used in the computer vision domain (Robin-
son et al., 2020), guiding a learning method to
correct its mistakes more quickly. In our case, we
select the negative samples by using a pretrained
context-response matching model (Cai et al., 2020).
Given a context input, the responses with the top
matching scores would be considered as the nega-
tive samples, and used for the contrastive objective.
In terms of model architecture, we select condi-
tional variational autoencoder (CVAE) (Zhao et al.,
2017). This provides an encoder-decoder structure,
in which the BERT-GPT backbone can be applied.

2 Preliminary

2.1 Contrastive Predictive Coding
The key idea of contrastive predictive coding
(CPC) (Oord et al., 2018) is to learn representa-
tions that encode the underlying shared information
between different parts of the high-dimensional sig-
nal, with the help of next step prediction. Given a
sequence of inputs {x1, x2, · · · , xt, · · · , xT } (e.g.,
speech signal input), we obtain the latent repre-
sentations ht = genc(xt) for each xt. A con-
text representation zt = gAR(h≤t) summarizes all
{h1, h2, · · · , ht} using an auto-regressive model
gAR. To predict the future observations xt+k, the
following positive real score is considered.

fk(xt+k, zt) = exp(hTt+kWkzt), (1)

where Wk is linear transformation for step k. To
train the predictive model, a negative contrastive
estimation (NCE) objective is used.

LCPC = −EX [log
fk(xt+k, zt)∑
xj∈X fk(xj , zt)

], (2)

where X = {x1, · · · , xN} is a set of N random
samples containing the positive sample xt+k and
N − 1 negative samples from some distribution
p(xt+k). The negative samples aim to provide guid-
ing on learning predictive information in the latent
representations of the context inputs.

2.2 Conditional VAE
The conditional VAE (CVAE) (Zhao et al., 2017)
provides a way to utilize the context feature as a
conditional input to the VAE framework. Orig-
inally, VAE contains an encoder qφ(z|x) and a
decoder pθ(x|z), where x is the input data and z
is the latent representation. It assumes a Gaussian
prior distribution p(z), and by using the follow-
ing objective, it approximates the expected log-
likelihood.

LVAE(x;θ,φ) = Ez∼qφ(z|x) [log pθ(x|z)]
− DKL(qφ(z|x) ‖ p(z)) , (3)

where the conditional likelihood term (first) and the
KL term (second) characterize reconstruction and
generalization capabilities, respectively. In prac-
tice, reparameterization trick is used, in order to
achieve Gaussian posterior distribution and com-
pute the KL term in (3). Specifically, the encoder
yields mean µ and standard deviation σ, and we
can sample from such Gaussian distribution:

z = µ+ σ � ε, (4)

where ε ∼ N (0, I). The CVAE, in comparison,
has an additional condition input c. In the dia-
logue response problem setup, the condition c cor-
responds to the context input, while x is the re-
sponse input. Both the encoder and the decoder
take an extra input c, denoted as qφ(z|x, c) and
pθ(x|z, c), respectively. For the prior, a prior net-
work pψ(z|c) is required, resulting in the updated
objective as follow.

LCVAE(x;θ,φ,ψ) = Ez∼qφ(z|x,c) [log pθ(x|z, c)]
− DKL(qφ(z|x, c) ‖ pψ(z|c)) . (5)

During inference, we sample z ∼ pψ(z|c) and
generate using the decoder pθ(x|z, c), while the
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Figure 2: Conditional VAE Framework for Dialogue Response Generation with BERT Encoder and GPT-2 De-
coder. The Training Flow is in Blue and the Inference Flow is in Orange.

Figure 3: Applying Contrastive Learning on the Repre-
sentation Framwork for Multi-turn Dialogue Response
Generation Task.

response input x is not used. Similar to VAE,
the reparameterization trick is used accordingly
on both the posterior and prior networks.

3 Method

We include detailed model design in the following
section. By introducing the utterance-level con-
trastive learning, our proposed model learns sen-
tence representations that are capable of predicting
future utterances. CVAE is considered as our main
model architecture, where we use a BERT encoder
and a GPT-2 decoder.

3.1 Representation Learning with a
Transformer-Based Framework

We first introduce our model backbone, which is
basically a CVAE model with a BERT encoder
and a GPT-2 decoder. When encoding, we con-
sider h[CLS], the output of the special token [CLS]
of the last-layer, as the sentence-level representa-
tion, and obtain the latent representation by a linear
mapping e(·) parameterized as z =WEh[CLS]. In
the CVAE framework, since we have the poste-

rior and prior networks, we denote the former as
the utterance encoder fu(·), and define the latter
as a combination of two encoders fc(fu(·)), both
of which are BERT encoders with outputs hx and
hc, respectively. Correspondingly, we have er(·)
and ec(·) as recognition encoder and prior encoder
(i.e., linear mappings), that take (hx, hc) and hc
as input, respectively. The outputs of the two en-
coder are zpost ∼ qφ(z|x, c) and zprior ∼ pψ(z|c),
respectively.

When decoding, we follow the Memory ap-
proach in Optimus (Li et al., 2020). Specifically,
we first compute hM = WMz, where WM ∈
RLH is a weight matrix. The output hM ∈ RLH is
separated into L vectors of lengthH , each of which
is attended by one layer of the GPT-2 decoder g(·).
Figure 2 shows the CVAE framework for both train-
ing and inference. Note that the outputs of the
recognition encoder and the prior encoder are µ
and σ, as the mean and standard deviation of the
learnt qθ(z|x, c) and pψ(z|c), respectively. As dis-
cussed in Sec 2.2, such a reparameterization trick is
often used in VAE framework, where z = µ+σ�ε
for some ε ∼ N (0, I).

3.2 Utterance Level Contrastive Learning

With latent representation learnt, it is straight-
forward to adapt the contrastive learning in our
model backbone. Different from speech signal
data on which the original CPC objective is ap-
plied, dialogue datasets contain multi-turn utter-
ances between two speakers for each conversa-
tion input. In this case, we consider encoding
c = {u1,u2, · · · ,uk−1} as a concatenation of all
utterances in the context history. The output hc

is then sent to the latent encoder e(·), with an out-
put z = e(hc) that is used to predict the sentence
representation hx of the next time step utterance
x = uk.
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Figure 3 summarizes the utterance level con-
trastive learning procedure, with a training objec-
tive defined as follow.

LCL = −E[log exp(hxWkzc)∑
xj∈X exp(hjWkzc)

], (6)

where Wk is the weight matrix. Note that the
proposed contrastive learning procedure can be di-
rectly applied to the CVAE model, in which zc is
basically the representation learnt by the prior en-
coder ec(·). By combing the CVAE objective and
the contrastive loss, we defined the final objective
of our proposed model,

L = LCVAE−λEz∼pψ(z|c)[log
exp(hxWkz)∑
xj∈X exp(hjWkz)

],

(7)
where λ is the hyper-parameter.

3.3 Improved CL with Hard Negative
Sampling

We further improve our contrastive learning (CL)
procedure by introducing hard negative sampling.
The traditional CL usually uniformly selects neg-
ative samples from the data distribution. In the
dialogue setup, this would be sampling random
response samples xj for a given context input
c. However, it is known in the computer vision
domain that using negative samples, which look
similar to the positive sample, would help cor-
rect the mistakes made by the encoder and learn
useful information much more quickly (Robinson
et al., 2020). For image datasets, one may consider
adding noisy pixels, or rotating the positive images
to obtain the negative ones. Similar approaches can
be done in the natural language domain by using
word permutation.

In our case, the multi-turn dialogue data setup
allows us to further utilize the context-response
relationship, and conduct hard negative sampling
by using context-response matching models. Fol-
lowing (Cai et al., 2020), we consider training a
Multi-hop Selector Network (MSN) (Yuan et al.,
2019) which provides matching scores between
the context and response inputs. Specifically, we
construct a dialogue dataset, in which each con-
text input c is paired with one positive response
sample x, and multiple randomly sample distra-
tor response samples xj . The model is trained to
predict whether a given context-response pair is
positive or negative. When training our proposed

CVAE model, the hard negative samples are se-
lected based on higher matching scores, provided
by the MSN model.

4 Related Work
Transformer-based representation learning for
text generation. Transformer layers have been
applied in various language models and achnce
engaged in such a framework, it aims to generate
novel ieved great results (Devlin et al., 2018; Yang
et al., 2019; Keskar et al., 2019). Many are pre-
trained models and can be fine-tuned to adapt to
various downstream tasks (Le and Mikolov, 2014;
Dai and Le, 2015; Kiros et al., 2015). Recent works
try to learn an interpretable representation space for
the sentence encoding, using Transformer-based en-
coders and decoders. OPTIMUS (Li et al., 2020)
provides a pretrained language model with a BERT
encoder and a GPT-2 decoder. With variational
inferesentences by learning a universal latent space
through the pretraining. PLATO (Bao et al., 2019)
also adopts BERT framework. It is specifically de-
signed for dialogue generation, while learning a
discrete latent variable for action recognition, upon
which the generation is based.
Contrastive learning in NLP. Contrastive learn-
ing has been widely used with applications on vari-
ous computer vision (Chopra et al., 2005; Schroff
et al., 2015) and NLP problems (Mikolov et al.,
2013; Logeswaran and Lee, 2018). It aims to
learn a latent representation by contrasting pos-
itive and negative pairs in different setups. In
the NLP domain, contrastive learning is applied
in Word2Vec (Mikolov et al., 2013), a word em-
bedding model, in which neighbouring words are
predicted from context. Other than that, it is also
used for sentence representation, where the pos-
itive and negative pairs are sampled as two con-
tiguous sentences and sentences from other doc-
ument, respectively (Logeswaran and Lee, 2018).
CLAPS (Lee et al., 2020) is proposed recently for
conditional text generation, sampling positive and
negative sentences by adding perturbations to the
input sequence. Being seq2seq model, CLAPS fo-
cuses on machine translation and text summariza-
tion, while our model tackles dialogue response
generation, contrasting each utterance against other
matching responses from the dialogue dataset.

5 Experiments

In this section, we present the experiment results
of the proposed model, with comparison to sev-
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BLEU BOW Intra Inter
R P F1 A E G dist1 dist2 dist1 dist2

GPT-2 0.467 0.14 0.215 0.891 0.637 0.58 0.871 0.946 0.499 0.867
PLATO 0.331 0.174 0.228 0.929 0.623 0.747 0.957 0.989 0.412 0.626
iVAE 0.425 0.248 0.313 0.923 0.641 0.784 0.837 0.879 0.413 0.749
CVAE 0.489 0.226 0.309 0.928 0.607 0.626 0.972 0.998 0.695 0.975
CVAE + CL 0.498 0.239 0.323 0.937 0.621 0.64 0.936 0.972 0.661 0.948

Table 1: Reference-based Results on DailyDialog. (P: precision, R: recall, A: average, E: extreme, G: greedy).
Higher BLEU and BOW Embedding indicate better quality of generated responses. Higher intra/inter-dist means
better generation diversity.

BLEU BOW Intra Inter
R P F1 A E G dist1 dist2 dist1 dist2

GPT-2 0.372 0.203 0.263 0.924 0.571 0.737 0.823 0.852 0.517 0.894
PLATO 0.382 0.237 0.293 0.934 0.593 0.768 0.852 0.903 0.431 0.88
GLC 0.433 0.243 0.311 0.928 0.543 0.717 0.774 0.879 - -
CVAE 0.415 0.256 0.317 0.949 0.584 0.757 0.947 0.995 0.617 0.932
CVAE + CL 0.419 0.267 0.326 0.95 0.583 0.761 0.943 0.993 0.618 0.938

Table 2: Reference-based Results on PersonaChat.

eral baseline models across different dialogue re-
sponse datasets. Detailed experimental setups are
included, with analysis on both reference-based
and reference-free evaluation.

5.1 Implementation Details
We implement our proposed model based on the
CVAE model backbone. As discussed in Sec-
tion 3.1, we apply the contrastive learning proce-
dure (Section 3.2) on the CVAE framework, in
which the context latent representation zc is used
to predict the response hidden state hx, with nega-
tive samples selected by the pretrained MSN model.
Our model uses BERT encoder (12 transformer lay-
ers with hidden size 768 and self-attention heads
12), and GPT-2 decoder (12 transformer layers with
hidden size 768 and self-attention heads 12).

5.2 Datasets
We mainly evaluate our model on two benchmark
datasets, namely the DailyDialog dataset (Li et al.,
2017) and the PersonaChat dataset (Zhang et al.,
2018). The former contains 13K daily conversa-
tions for a English learner, with an average number
of turns in a conversation as 8.5. The latter is a
knowledge grounded conversation dataset where
two participants chat naturally and try to get to
know each other. A total of 11K dialogues are con-
tained in PersonaChat with an average number of
turns per conversation as 15. For both datasets, we

process each utterance as the response of the pre-
vious context utterances from both speakers. Both
datasets are separated into train, validation, and
test subsets, with a separation ratio of 10:1:1 for
DailyDialog, and 9:1:1 for PersonaChat.

5.3 Baseline Models
We select State-Of-The-Art (SOTA) models from
different model categories as our baseline models.
For auto-regressive model, we consider Dialog-
GPT (Zhang et al., 2019), which is a GPT-2 based
model that is specifically designed for dialogue
response generation. For dialogue response gener-
ation model that uses contrastive learning, we in-
clude group-wise contrastive learning (GCL) (Cai
et al., 2020), which conduct CL between target
dialogue model and a pretrained reference model.
PLATO (Bao et al., 2019) is another model that
uses transformer-based model architecture while
including a discrete latent variable to tackle the one-
to-many mapping problem. Last but not the least,
we compare our model to the SOTA VAE model
on text generation, the implicit VAE (iVAE) (Fang
et al., 2019), in which the original Gaussian as-
sumption is replaced by an implicit distribution,
learnt in an adversarial fashion.

5.4 Evaluation Metrics
In our work, we consider the traditional reference-
based, as well as several newly proposed reference-
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DialogRPT
RoBERTa Eval

updown depth width score
Grount Truth 0.403 0.537 0.591 0.319 2.812
GPT-2 0.311 0.414 0.437 0.243 2.739
PLATO 0.314 0.453 0.468 0.255 2.132
CVAE 0.392 0.496 0.547 0.301 1.931
CVAE + CL 0.407 0.519 0.563 0.313 2.106

Table 3: Reference-free Results on Dailydialog (H vs R: Human vs Random; H vs M: Human vs Machine). Higher
scores indicate better generation quality in the corresponding categories.

DialogRPT
RoBERTa Eval

updown depth width score
GPT-2 0.339 0.523 0.625 0.301 1.383
PLATO 0.358 0.574 0.641 0.318 1.582
GLC 0.361 0.577 0.639 0.319 1.607
CVAE 0.367 0.577 0.647 0.322 1.678
CVAE + CL 0.372 0.583 0.669 0.329 1.702

Table 4: Reference-free Results on PersonaChat.

free evaluation metrics. The former basically mea-
sures the relevance between the reference response
data (ground truth) and the generated response sam-
ples. In comparison, the reference-free evaluators
do not need the reference responses, while comput-
ing the score based on a trained evaluation model.

We mainly consider three reference-based evalu-
ation metrics: 1) BLEU score measures how many
n-gram (n = 4 in our experiments) from generated
response overlaps with the references. We sample
10 responses; BLEU-precision and BLEU-recall
are defined as average and maximum scores. 2) Co-
sine similarity of bag-of-words (BOW) embedding
between the generated response and the reference
is considered (e.g., 3 types of embedding including
greedy, average, and extreme). 3) Distinct evalu-
ates the diversity of the generation; dist-n is the
ratio of unique n-grams (n = 1, 2) over all n-grams
in the generated responses. We evaluate both within
each sampled response and among all responses as
intra-dist and inter-dist, respectively.

For reference-free evaluators, we consider the
following two metrics. The first one is Dialo-
gRPT (Gao et al., 2020), which provides ranking
scores of responses based on human evaluation on
i) Width: the number of dialogues after the cur-
rent turn (c,x); ii) Depth: the maximum length
of the dialogue after the current turn; and iii) Up-
down: the number of up votes minus the number of
down votes (by human raters). Another one is the

RoBERTa Evaluator (Zhao et al., 2020), which is
first trained on next-sentence-prediction task in an
unsupervised manner, and then trained on predic-
iting human annotated data in a semi-supervised
setup. The model is trained using the RoBERTa
encoder (Liu et al., 2019), on the concatenation of
the input context c and the generated response x̃,
with output rescaled to the human rating scale.

5.5 Results

Table 1 and 2 show the reference-based results
on DailyDialog and PersonaChat datasets, respec-
tively. In terms of BLEU score, our proposed
CVAE/CVAE+CL achieves better performance
than the other Transformer-based models. By
adding the proposed utterance level contrastive
learning (CL) to CVAE, the BLEU score is im-
proved from 0.309 to 0.318, outperforming GPT-
2 and PLATO, while being comparable to iVAE.
Meanwhile, CVAE-based models provide much
higher generation diversity in both inter and intra-
dist. Note that adding contrastive learning does
slightly drop the generation diversity of CVAE,
which is likely due to the additional predictive in-
formation learnt in the representation of context
inputs. Overall, our proposed model CVAE+CL
achieves top-tier performance in the majority of the
evaluation categories, across both datasets.

Table 3 and 4 present the reference-free results
on DailyDialog and PersonaChat, respectively. For
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Models Recall Precision F1
Proposed Model 0.498 0.239 0.323
- HNS 0.49 0.235 0.317
- CL 0.489 0.226 0.309
- TF 0.265 0.222 0.242

Table 5: Ablation Study on DailyDialog via Reference-
based Evaluation Metrics.

Objective λ Recall Precision F1

LCVAE + λLCL

0.0 0.489 0.226 0.309
0.1 0.489 0.232 0.315
0.2 0.493 0.232 0.316
0.5 0.498 0.239 0.323
1.0 0.496 0.24 0.323
2.0 0.492 0.235 0.318

Table 6: Sensitiveness of Contrastive Learning Objec-
tive against Hyper-parameter λ. Results on DailyDia-
log via Reference-based Evaluation Metrics.

DailyDialog, CVAE provides better overall Dialo-
gRPT scores than the other baseline models. How-
ever, since responses are generated based on the
context latent representations (instead of direct sen-
tence inputs), CVAE does not provide matching
words across context and response, reducing the
RoBERTa score for the DailyDialog dataset. For
PersonaChat, CVAE outperforms the other baseline
models in both evaluation metrics. Overall, we see
the effectiveness of adding CL to the CVAE frame-
work, improving both DialogRPT and RoBERTa
scores across the two datasets.

Ablation study is conducted based on each com-
ponents in the proposed CVAE. Table 5 shows the
BLEU score (i.e., recall, precision, and F1) of
our model on the DailyDialog dataset, in which
we gradually remove one component at a time to
demonstrate the effectiveness from each of them.
We first remove hard negative sampling (HNS) and
use random negative samples (from the same train-
ing mini batch) instead. The contrastive learning
(CL) objective is then removed, where we notice a
drop of 0.014 (from 0.323 to 0.309) in F1. Finally,
the model performance drops drastically when we
replace the transformer layers (TF) in the CVAE
with LSTM (i.e., original CVAE framework); F1
decreeases from 0.309 to 0.242.

We further show the sensitiveness of our pro-
posed utterance-based contrastive loss against dif-
ferent values of hyper-parameter λ. By tuning λ
from 0.0 to 2.0, we report the BLEU scores of each
training objectives. As shown in Table 6, the model
with λ = 0.5 and λ = 1.0 achieves the best over-

Figure 4: Examples of Hard Negative Sampling. Blue
Ones are Ground Truth Reference, and Red Ones are
Negative Samples Selected by MSN.

all performance, while the models with the other
values of λ also provide competitive results. This
demonstrates that our model is relatively insensi-
tive to the hyper-parameter for contrastive learning
objective. Meanwhile, we can see that adding the
contrastive loss is improving the performance (re-
gardless of different values of λ) when comparing
the baseline CVAE (i.e., λ = 0.0).

Figure 4 provides examples of hard negative sen-
tences selected by MSN. Each example case in-
cludes context sentence(s), a ground truth response
sentence (reference), as well as 3 selected hard
negative samples. As can be seen, the negative
sentences share relevant words and contents with
the input context, which provides a more efficient
training for our model.

6 Conclusion

In this work, we propose a dialogue response gen-
eration model that combines the controllability of
representation learning models and SOTA perfor-
mance of AR-based frameworks. An efficient ut-
terance level contrastive learning is introduced to
enrich the information learned in the latent rep-
resentations (i.e., predictive information of utter-
ance in the next time step). Our proposed model
achieves competitive performance comparing to
the SOTA models in different benchmark datasets.
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