@inproceedings{guo-etal-2021-influence,
title = "Influence of user personality on dialogue task performance: A case study using a rule-based dialogue system",
author = "Guo, Ao and
Ohashi, Atsumoto and
Hirai, Ryu and
Chiba, Yuya and
Tsunomori, Yuiko and
Higashinaka, Ryuichiro",
editor = "Papangelis, Alexandros and
Budzianowski, Pawe{\l} and
Liu, Bing and
Nouri, Elnaz and
Rastogi, Abhinav and
Chen, Yun-Nung",
booktitle = "Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nlp4convai-1.25",
doi = "10.18653/v1/2021.nlp4convai-1.25",
pages = "263--270",
abstract = "Endowing a task-oriented dialogue system with adaptiveness to user personality can greatly help improve the performance of a dialogue task. However, such a dialogue system can be practically challenging to implement, because it is unclear how user personality influences dialogue task performance. To explore the relationship between user personality and dialogue task performance, we enrolled participants via crowdsourcing to first answer specified personality questionnaires and then chat with a dialogue system to accomplish assigned tasks. A rule-based dialogue system on the prevalent Multi-Domain Wizard-of-Oz (MultiWOZ) task was used. A total of 211 participants{'} personalities and their 633 dialogues were collected and analyzed. The results revealed that sociable and extroverted people tended to fail the task, whereas neurotic people were more likely to succeed. We extracted features related to user dialogue behaviors and performed further analysis to determine which kind of behavior influences task performance. As a result, we identified that average utterance length and slots per utterance are the key features of dialogue behavior that are highly correlated with both task performance and user personality.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guo-etal-2021-influence">
<titleInfo>
<title>Influence of user personality on dialogue task performance: A case study using a rule-based dialogue system</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ao</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atsumoto</namePart>
<namePart type="family">Ohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryu</namePart>
<namePart type="family">Hirai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuya</namePart>
<namePart type="family">Chiba</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuiko</namePart>
<namePart type="family">Tsunomori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryuichiro</namePart>
<namePart type="family">Higashinaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paweł</namePart>
<namePart type="family">Budzianowski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elnaz</namePart>
<namePart type="family">Nouri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhinav</namePart>
<namePart type="family">Rastogi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Endowing a task-oriented dialogue system with adaptiveness to user personality can greatly help improve the performance of a dialogue task. However, such a dialogue system can be practically challenging to implement, because it is unclear how user personality influences dialogue task performance. To explore the relationship between user personality and dialogue task performance, we enrolled participants via crowdsourcing to first answer specified personality questionnaires and then chat with a dialogue system to accomplish assigned tasks. A rule-based dialogue system on the prevalent Multi-Domain Wizard-of-Oz (MultiWOZ) task was used. A total of 211 participants’ personalities and their 633 dialogues were collected and analyzed. The results revealed that sociable and extroverted people tended to fail the task, whereas neurotic people were more likely to succeed. We extracted features related to user dialogue behaviors and performed further analysis to determine which kind of behavior influences task performance. As a result, we identified that average utterance length and slots per utterance are the key features of dialogue behavior that are highly correlated with both task performance and user personality.</abstract>
<identifier type="citekey">guo-etal-2021-influence</identifier>
<identifier type="doi">10.18653/v1/2021.nlp4convai-1.25</identifier>
<location>
<url>https://aclanthology.org/2021.nlp4convai-1.25</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>263</start>
<end>270</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Influence of user personality on dialogue task performance: A case study using a rule-based dialogue system
%A Guo, Ao
%A Ohashi, Atsumoto
%A Hirai, Ryu
%A Chiba, Yuya
%A Tsunomori, Yuiko
%A Higashinaka, Ryuichiro
%Y Papangelis, Alexandros
%Y Budzianowski, Paweł
%Y Liu, Bing
%Y Nouri, Elnaz
%Y Rastogi, Abhinav
%Y Chen, Yun-Nung
%S Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online
%F guo-etal-2021-influence
%X Endowing a task-oriented dialogue system with adaptiveness to user personality can greatly help improve the performance of a dialogue task. However, such a dialogue system can be practically challenging to implement, because it is unclear how user personality influences dialogue task performance. To explore the relationship between user personality and dialogue task performance, we enrolled participants via crowdsourcing to first answer specified personality questionnaires and then chat with a dialogue system to accomplish assigned tasks. A rule-based dialogue system on the prevalent Multi-Domain Wizard-of-Oz (MultiWOZ) task was used. A total of 211 participants’ personalities and their 633 dialogues were collected and analyzed. The results revealed that sociable and extroverted people tended to fail the task, whereas neurotic people were more likely to succeed. We extracted features related to user dialogue behaviors and performed further analysis to determine which kind of behavior influences task performance. As a result, we identified that average utterance length and slots per utterance are the key features of dialogue behavior that are highly correlated with both task performance and user personality.
%R 10.18653/v1/2021.nlp4convai-1.25
%U https://aclanthology.org/2021.nlp4convai-1.25
%U https://doi.org/10.18653/v1/2021.nlp4convai-1.25
%P 263-270
Markdown (Informal)
[Influence of user personality on dialogue task performance: A case study using a rule-based dialogue system](https://aclanthology.org/2021.nlp4convai-1.25) (Guo et al., NLP4ConvAI 2021)
ACL