@inproceedings{duong-etal-2021-tfw2v,
title = "{TFW}2{V}: An Enhanced Document Similarity Method for the Morphologically Rich {F}innish Language",
author = {Duong, Quan and
H{\"a}m{\"a}l{\"a}inen, Mika and
Alnajjar, Khalid},
editor = {H{\"a}m{\"a}l{\"a}inen, Mika and
Alnajjar, Khalid and
Partanen, Niko and
Rueter, Jack},
booktitle = "Proceedings of the Workshop on Natural Language Processing for Digital Humanities",
month = dec,
year = "2021",
address = "NIT Silchar, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2021.nlp4dh-1.19",
pages = "163--172",
abstract = "Measuring the semantic similarity of different texts has many important applications in Digital Humanities research such as information retrieval, document clustering and text summarization. The performance of different methods depends on the length of the text, the domain and the language. This study focuses on experimenting with some of the current approaches to Finnish, which is a morphologically rich language. At the same time, we propose a simple method, TFW2V, which shows high efficiency in handling both long text documents and limited amounts of data. Furthermore, we design an objective evaluation method which can be used as a framework for benchmarking text similarity approaches.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="duong-etal-2021-tfw2v">
<titleInfo>
<title>TFW2V: An Enhanced Document Similarity Method for the Morphologically Rich Finnish Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Quan</namePart>
<namePart type="family">Duong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Alnajjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Natural Language Processing for Digital Humanities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Alnajjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niko</namePart>
<namePart type="family">Partanen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jack</namePart>
<namePart type="family">Rueter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">NIT Silchar, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Measuring the semantic similarity of different texts has many important applications in Digital Humanities research such as information retrieval, document clustering and text summarization. The performance of different methods depends on the length of the text, the domain and the language. This study focuses on experimenting with some of the current approaches to Finnish, which is a morphologically rich language. At the same time, we propose a simple method, TFW2V, which shows high efficiency in handling both long text documents and limited amounts of data. Furthermore, we design an objective evaluation method which can be used as a framework for benchmarking text similarity approaches.</abstract>
<identifier type="citekey">duong-etal-2021-tfw2v</identifier>
<location>
<url>https://aclanthology.org/2021.nlp4dh-1.19</url>
</location>
<part>
<date>2021-12</date>
<extent unit="page">
<start>163</start>
<end>172</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TFW2V: An Enhanced Document Similarity Method for the Morphologically Rich Finnish Language
%A Duong, Quan
%A Hämäläinen, Mika
%A Alnajjar, Khalid
%Y Hämäläinen, Mika
%Y Alnajjar, Khalid
%Y Partanen, Niko
%Y Rueter, Jack
%S Proceedings of the Workshop on Natural Language Processing for Digital Humanities
%D 2021
%8 December
%I NLP Association of India (NLPAI)
%C NIT Silchar, India
%F duong-etal-2021-tfw2v
%X Measuring the semantic similarity of different texts has many important applications in Digital Humanities research such as information retrieval, document clustering and text summarization. The performance of different methods depends on the length of the text, the domain and the language. This study focuses on experimenting with some of the current approaches to Finnish, which is a morphologically rich language. At the same time, we propose a simple method, TFW2V, which shows high efficiency in handling both long text documents and limited amounts of data. Furthermore, we design an objective evaluation method which can be used as a framework for benchmarking text similarity approaches.
%U https://aclanthology.org/2021.nlp4dh-1.19
%P 163-172
Markdown (Informal)
[TFW2V: An Enhanced Document Similarity Method for the Morphologically Rich Finnish Language](https://aclanthology.org/2021.nlp4dh-1.19) (Duong et al., NLP4DH 2021)
ACL