@inproceedings{montfort-etal-2021-using,
title = "Using Referring Expression Generation to Model Literary Style",
author = "Montfort, Nick and
SadeghiKivi, Ardalan and
Yuan, Joanne and
Zhu, Alan Y.",
editor = {H{\"a}m{\"a}l{\"a}inen, Mika and
Alnajjar, Khalid and
Partanen, Niko and
Rueter, Jack},
booktitle = "Proceedings of the Workshop on Natural Language Processing for Digital Humanities",
month = dec,
year = "2021",
address = "NIT Silchar, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2021.nlp4dh-1.8",
pages = "64--74",
abstract = "Novels and short stories are not just remarkable because of what events they represent. The narrative style they employ is significant. To understand the specific contributions of different aspects of this style, it is possible to create limited symbolic models of narrating that hold almost all of the narrative discourse constant while varying a single aspect. In this paper we use a new implementation of a system for narrative discourse generation, Curveship, to change how existents at the story level are named. This by itself allows for the telling of the same underlying story in ways that evoke, for instance, a fabular or parable-like mode, the style of narrator Patrick Bateman in Brett Easton Ellis{'}s American Psycho, and the unusual dialect of Anthony Burgess{'}s A Clockwork Orange.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="montfort-etal-2021-using">
<titleInfo>
<title>Using Referring Expression Generation to Model Literary Style</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nick</namePart>
<namePart type="family">Montfort</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ardalan</namePart>
<namePart type="family">SadeghiKivi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joanne</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="given">Y</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Natural Language Processing for Digital Humanities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Alnajjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niko</namePart>
<namePart type="family">Partanen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jack</namePart>
<namePart type="family">Rueter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">NIT Silchar, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Novels and short stories are not just remarkable because of what events they represent. The narrative style they employ is significant. To understand the specific contributions of different aspects of this style, it is possible to create limited symbolic models of narrating that hold almost all of the narrative discourse constant while varying a single aspect. In this paper we use a new implementation of a system for narrative discourse generation, Curveship, to change how existents at the story level are named. This by itself allows for the telling of the same underlying story in ways that evoke, for instance, a fabular or parable-like mode, the style of narrator Patrick Bateman in Brett Easton Ellis’s American Psycho, and the unusual dialect of Anthony Burgess’s A Clockwork Orange.</abstract>
<identifier type="citekey">montfort-etal-2021-using</identifier>
<location>
<url>https://aclanthology.org/2021.nlp4dh-1.8</url>
</location>
<part>
<date>2021-12</date>
<extent unit="page">
<start>64</start>
<end>74</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Referring Expression Generation to Model Literary Style
%A Montfort, Nick
%A SadeghiKivi, Ardalan
%A Yuan, Joanne
%A Zhu, Alan Y.
%Y Hämäläinen, Mika
%Y Alnajjar, Khalid
%Y Partanen, Niko
%Y Rueter, Jack
%S Proceedings of the Workshop on Natural Language Processing for Digital Humanities
%D 2021
%8 December
%I NLP Association of India (NLPAI)
%C NIT Silchar, India
%F montfort-etal-2021-using
%X Novels and short stories are not just remarkable because of what events they represent. The narrative style they employ is significant. To understand the specific contributions of different aspects of this style, it is possible to create limited symbolic models of narrating that hold almost all of the narrative discourse constant while varying a single aspect. In this paper we use a new implementation of a system for narrative discourse generation, Curveship, to change how existents at the story level are named. This by itself allows for the telling of the same underlying story in ways that evoke, for instance, a fabular or parable-like mode, the style of narrator Patrick Bateman in Brett Easton Ellis’s American Psycho, and the unusual dialect of Anthony Burgess’s A Clockwork Orange.
%U https://aclanthology.org/2021.nlp4dh-1.8
%P 64-74
Markdown (Informal)
[Using Referring Expression Generation to Model Literary Style](https://aclanthology.org/2021.nlp4dh-1.8) (Montfort et al., NLP4DH 2021)
ACL