@inproceedings{uyangodage-etal-2021-transformers,
title = "Transformers to Fight the {COVID}-19 Infodemic",
author = "Uyangodage, Lasitha and
Ranasinghe, Tharindu and
Hettiarachchi, Hansi",
editor = "Feldman, Anna and
Da San Martino, Giovanni and
Leberknight, Chris and
Nakov, Preslav",
booktitle = "Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nlp4if-1.20",
doi = "10.18653/v1/2021.nlp4if-1.20",
pages = "130--135",
abstract = "The massive spread of false information on social media has become a global risk especially in a global pandemic situation like COVID-19. False information detection has thus become a surging research topic in recent months. NLP4IF-2021 shared task on fighting the COVID-19 infodemic has been organised to strengthen the research in false information detection where the participants are asked to predict seven different binary labels regarding false information in a tweet. The shared task has been organised in three languages; Arabic, Bulgarian and English. In this paper, we present our approach to tackle the task objective using transformers. Overall, our approach achieves a 0.707 mean F1 score in Arabic, 0.578 mean F1 score in Bulgarian and 0.864 mean F1 score in English ranking 4$^{th}$ place in all the languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="uyangodage-etal-2021-transformers">
<titleInfo>
<title>Transformers to Fight the COVID-19 Infodemic</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lasitha</namePart>
<namePart type="family">Uyangodage</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansi</namePart>
<namePart type="family">Hettiarachchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Leberknight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The massive spread of false information on social media has become a global risk especially in a global pandemic situation like COVID-19. False information detection has thus become a surging research topic in recent months. NLP4IF-2021 shared task on fighting the COVID-19 infodemic has been organised to strengthen the research in false information detection where the participants are asked to predict seven different binary labels regarding false information in a tweet. The shared task has been organised in three languages; Arabic, Bulgarian and English. In this paper, we present our approach to tackle the task objective using transformers. Overall, our approach achieves a 0.707 mean F1 score in Arabic, 0.578 mean F1 score in Bulgarian and 0.864 mean F1 score in English ranking 4^th place in all the languages.</abstract>
<identifier type="citekey">uyangodage-etal-2021-transformers</identifier>
<identifier type="doi">10.18653/v1/2021.nlp4if-1.20</identifier>
<location>
<url>https://aclanthology.org/2021.nlp4if-1.20</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>130</start>
<end>135</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transformers to Fight the COVID-19 Infodemic
%A Uyangodage, Lasitha
%A Ranasinghe, Tharindu
%A Hettiarachchi, Hansi
%Y Feldman, Anna
%Y Da San Martino, Giovanni
%Y Leberknight, Chris
%Y Nakov, Preslav
%S Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F uyangodage-etal-2021-transformers
%X The massive spread of false information on social media has become a global risk especially in a global pandemic situation like COVID-19. False information detection has thus become a surging research topic in recent months. NLP4IF-2021 shared task on fighting the COVID-19 infodemic has been organised to strengthen the research in false information detection where the participants are asked to predict seven different binary labels regarding false information in a tweet. The shared task has been organised in three languages; Arabic, Bulgarian and English. In this paper, we present our approach to tackle the task objective using transformers. Overall, our approach achieves a 0.707 mean F1 score in Arabic, 0.578 mean F1 score in Bulgarian and 0.864 mean F1 score in English ranking 4^th place in all the languages.
%R 10.18653/v1/2021.nlp4if-1.20
%U https://aclanthology.org/2021.nlp4if-1.20
%U https://doi.org/10.18653/v1/2021.nlp4if-1.20
%P 130-135
Markdown (Informal)
[Transformers to Fight the COVID-19 Infodemic](https://aclanthology.org/2021.nlp4if-1.20) (Uyangodage et al., NLP4IF 2021)
ACL
- Lasitha Uyangodage, Tharindu Ranasinghe, and Hansi Hettiarachchi. 2021. Transformers to Fight the COVID-19 Infodemic. In Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda, pages 130–135, Online. Association for Computational Linguistics.