@inproceedings{perkoff-2021-dialogue,
title = "Dialogue Act Classification for Augmentative and Alternative Communication",
author = "Perkoff, E. Margaret",
editor = "Field, Anjalie and
Prabhumoye, Shrimai and
Sap, Maarten and
Jin, Zhijing and
Zhao, Jieyu and
Brockett, Chris",
booktitle = "Proceedings of the 1st Workshop on NLP for Positive Impact",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nlp4posimpact-1.12/",
doi = "10.18653/v1/2021.nlp4posimpact-1.12",
pages = "107--114",
abstract = "Augmentative and Alternative Communication (AAC) devices and applications are intended to make it easier for individuals with complex communication needs to participate in conversations. However, these devices have low adoption and retention rates. We review prior work with text recommendation systems that have not been successful in mitigating these problems. To address these gaps, we propose applying Dialogue Act classification to AAC conversations. We evaluated the performance of a state of the art model on a limited AAC dataset that was trained on both AAC and non-AAC datasets. The one trained on AAC (accuracy = 38.6{\%}) achieved better performance than that trained on a non-AAC corpus (accuracy = 34.1{\%}). These results reflect the need to incorporate representative datasets in later experiments. We discuss the need to collect more labeled AAC datasets and propose areas of future work."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="perkoff-2021-dialogue">
<titleInfo>
<title>Dialogue Act Classification for Augmentative and Alternative Communication</title>
</titleInfo>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="given">Margaret</namePart>
<namePart type="family">Perkoff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on NLP for Positive Impact</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anjalie</namePart>
<namePart type="family">Field</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shrimai</namePart>
<namePart type="family">Prabhumoye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maarten</namePart>
<namePart type="family">Sap</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhijing</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jieyu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Brockett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Augmentative and Alternative Communication (AAC) devices and applications are intended to make it easier for individuals with complex communication needs to participate in conversations. However, these devices have low adoption and retention rates. We review prior work with text recommendation systems that have not been successful in mitigating these problems. To address these gaps, we propose applying Dialogue Act classification to AAC conversations. We evaluated the performance of a state of the art model on a limited AAC dataset that was trained on both AAC and non-AAC datasets. The one trained on AAC (accuracy = 38.6%) achieved better performance than that trained on a non-AAC corpus (accuracy = 34.1%). These results reflect the need to incorporate representative datasets in later experiments. We discuss the need to collect more labeled AAC datasets and propose areas of future work.</abstract>
<identifier type="citekey">perkoff-2021-dialogue</identifier>
<identifier type="doi">10.18653/v1/2021.nlp4posimpact-1.12</identifier>
<location>
<url>https://aclanthology.org/2021.nlp4posimpact-1.12/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>107</start>
<end>114</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dialogue Act Classification for Augmentative and Alternative Communication
%A Perkoff, E. Margaret
%Y Field, Anjalie
%Y Prabhumoye, Shrimai
%Y Sap, Maarten
%Y Jin, Zhijing
%Y Zhao, Jieyu
%Y Brockett, Chris
%S Proceedings of the 1st Workshop on NLP for Positive Impact
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F perkoff-2021-dialogue
%X Augmentative and Alternative Communication (AAC) devices and applications are intended to make it easier for individuals with complex communication needs to participate in conversations. However, these devices have low adoption and retention rates. We review prior work with text recommendation systems that have not been successful in mitigating these problems. To address these gaps, we propose applying Dialogue Act classification to AAC conversations. We evaluated the performance of a state of the art model on a limited AAC dataset that was trained on both AAC and non-AAC datasets. The one trained on AAC (accuracy = 38.6%) achieved better performance than that trained on a non-AAC corpus (accuracy = 34.1%). These results reflect the need to incorporate representative datasets in later experiments. We discuss the need to collect more labeled AAC datasets and propose areas of future work.
%R 10.18653/v1/2021.nlp4posimpact-1.12
%U https://aclanthology.org/2021.nlp4posimpact-1.12/
%U https://doi.org/10.18653/v1/2021.nlp4posimpact-1.12
%P 107-114
Markdown (Informal)
[Dialogue Act Classification for Augmentative and Alternative Communication](https://aclanthology.org/2021.nlp4posimpact-1.12/) (Perkoff, NLP4PI 2021)
ACL