@inproceedings{dixon-birks-2021-improving,
title = "Improving Policing with Natural Language Processing",
author = "Dixon, Anthony and
Birks, Daniel",
editor = "Field, Anjalie and
Prabhumoye, Shrimai and
Sap, Maarten and
Jin, Zhijing and
Zhao, Jieyu and
Brockett, Chris",
booktitle = "Proceedings of the 1st Workshop on NLP for Positive Impact",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nlp4posimpact-1.13",
doi = "10.18653/v1/2021.nlp4posimpact-1.13",
pages = "115--124",
abstract = "This article explores the potential for Natural Language Processing (NLP) to enable a more effective, prevention focused and less confrontational policing model that has hitherto been too resource consuming to implement at scale. Problem-Oriented Policing (POP) is a potential replacement, at least in part, for traditional policing which adopts a reactive approach, relying heavily on the criminal justice system. By contrast, POP seeks to prevent crime by manipulating the underlying conditions that allow crimes to be committed. Identifying these underlying conditions requires a detailed understanding of crime events - tacit knowledge that is often held by police officers but which can be challenging to derive from structured police data. One potential source of insight exists in unstructured free text data commonly collected by police for the purposes of investigation or administration. Yet police agencies do not typically have the skills or resources to analyse these data at scale. In this article we argue that NLP offers the potential to unlock these unstructured data and by doing so allow police to implement more POP initiatives. However we caution that using NLP models without adequate knowledge may either allow or perpetuate bias within the data potentially leading to unfavourable outcomes.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dixon-birks-2021-improving">
<titleInfo>
<title>Improving Policing with Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anthony</namePart>
<namePart type="family">Dixon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Birks</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on NLP for Positive Impact</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anjalie</namePart>
<namePart type="family">Field</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shrimai</namePart>
<namePart type="family">Prabhumoye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maarten</namePart>
<namePart type="family">Sap</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhijing</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jieyu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Brockett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This article explores the potential for Natural Language Processing (NLP) to enable a more effective, prevention focused and less confrontational policing model that has hitherto been too resource consuming to implement at scale. Problem-Oriented Policing (POP) is a potential replacement, at least in part, for traditional policing which adopts a reactive approach, relying heavily on the criminal justice system. By contrast, POP seeks to prevent crime by manipulating the underlying conditions that allow crimes to be committed. Identifying these underlying conditions requires a detailed understanding of crime events - tacit knowledge that is often held by police officers but which can be challenging to derive from structured police data. One potential source of insight exists in unstructured free text data commonly collected by police for the purposes of investigation or administration. Yet police agencies do not typically have the skills or resources to analyse these data at scale. In this article we argue that NLP offers the potential to unlock these unstructured data and by doing so allow police to implement more POP initiatives. However we caution that using NLP models without adequate knowledge may either allow or perpetuate bias within the data potentially leading to unfavourable outcomes.</abstract>
<identifier type="citekey">dixon-birks-2021-improving</identifier>
<identifier type="doi">10.18653/v1/2021.nlp4posimpact-1.13</identifier>
<location>
<url>https://aclanthology.org/2021.nlp4posimpact-1.13</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>115</start>
<end>124</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Policing with Natural Language Processing
%A Dixon, Anthony
%A Birks, Daniel
%Y Field, Anjalie
%Y Prabhumoye, Shrimai
%Y Sap, Maarten
%Y Jin, Zhijing
%Y Zhao, Jieyu
%Y Brockett, Chris
%S Proceedings of the 1st Workshop on NLP for Positive Impact
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F dixon-birks-2021-improving
%X This article explores the potential for Natural Language Processing (NLP) to enable a more effective, prevention focused and less confrontational policing model that has hitherto been too resource consuming to implement at scale. Problem-Oriented Policing (POP) is a potential replacement, at least in part, for traditional policing which adopts a reactive approach, relying heavily on the criminal justice system. By contrast, POP seeks to prevent crime by manipulating the underlying conditions that allow crimes to be committed. Identifying these underlying conditions requires a detailed understanding of crime events - tacit knowledge that is often held by police officers but which can be challenging to derive from structured police data. One potential source of insight exists in unstructured free text data commonly collected by police for the purposes of investigation or administration. Yet police agencies do not typically have the skills or resources to analyse these data at scale. In this article we argue that NLP offers the potential to unlock these unstructured data and by doing so allow police to implement more POP initiatives. However we caution that using NLP models without adequate knowledge may either allow or perpetuate bias within the data potentially leading to unfavourable outcomes.
%R 10.18653/v1/2021.nlp4posimpact-1.13
%U https://aclanthology.org/2021.nlp4posimpact-1.13
%U https://doi.org/10.18653/v1/2021.nlp4posimpact-1.13
%P 115-124
Markdown (Informal)
[Improving Policing with Natural Language Processing](https://aclanthology.org/2021.nlp4posimpact-1.13) (Dixon & Birks, NLP4PI 2021)
ACL