@inproceedings{jung-2021-commitbert,
title = "{C}ommit{BERT}: Commit Message Generation Using Pre-Trained Programming Language Model",
author = "Jung, Tae Hwan",
editor = "Lachmy, Royi and
Yao, Ziyu and
Durrett, Greg and
Gligoric, Milos and
Li, Junyi Jessy and
Mooney, Ray and
Neubig, Graham and
Su, Yu and
Sun, Huan and
Tsarfaty, Reut",
booktitle = "Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nlp4prog-1.3",
doi = "10.18653/v1/2021.nlp4prog-1.3",
pages = "26--33",
abstract = "Commit message is a document that summarizes source code changes in natural language. A good commit message clearly shows the source code changes, so this enhances collaboration between developers. Therefore, our work is to develop a model that automatically writes the commit message. To this end, we release 345K datasets consisting of code modification and commit messages in six programming languages (Python, PHP, Go, Java, JavaScript, and Ruby). Similar to the neural machine translation (NMT) model, using our dataset, we feed the code modification to the encoder input and the commit message to the decoder input and measure the result of the generated commit message with BLEU-4. Also, we propose the following two training methods to improve the result of generating the commit message: (1) A method of preprocessing the input to feed the code modification to the encoder input. (2) A method that uses an initial weight suitable for the code domain to reduce the gap in contextual representation between programming language (PL) and natural language (NL).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jung-2021-commitbert">
<titleInfo>
<title>CommitBERT: Commit Message Generation Using Pre-Trained Programming Language Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tae</namePart>
<namePart type="given">Hwan</namePart>
<namePart type="family">Jung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Royi</namePart>
<namePart type="family">Lachmy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ziyu</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Durrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milos</namePart>
<namePart type="family">Gligoric</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junyi</namePart>
<namePart type="given">Jessy</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ray</namePart>
<namePart type="family">Mooney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huan</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Commit message is a document that summarizes source code changes in natural language. A good commit message clearly shows the source code changes, so this enhances collaboration between developers. Therefore, our work is to develop a model that automatically writes the commit message. To this end, we release 345K datasets consisting of code modification and commit messages in six programming languages (Python, PHP, Go, Java, JavaScript, and Ruby). Similar to the neural machine translation (NMT) model, using our dataset, we feed the code modification to the encoder input and the commit message to the decoder input and measure the result of the generated commit message with BLEU-4. Also, we propose the following two training methods to improve the result of generating the commit message: (1) A method of preprocessing the input to feed the code modification to the encoder input. (2) A method that uses an initial weight suitable for the code domain to reduce the gap in contextual representation between programming language (PL) and natural language (NL).</abstract>
<identifier type="citekey">jung-2021-commitbert</identifier>
<identifier type="doi">10.18653/v1/2021.nlp4prog-1.3</identifier>
<location>
<url>https://aclanthology.org/2021.nlp4prog-1.3</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>26</start>
<end>33</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CommitBERT: Commit Message Generation Using Pre-Trained Programming Language Model
%A Jung, Tae Hwan
%Y Lachmy, Royi
%Y Yao, Ziyu
%Y Durrett, Greg
%Y Gligoric, Milos
%Y Li, Junyi Jessy
%Y Mooney, Ray
%Y Neubig, Graham
%Y Su, Yu
%Y Sun, Huan
%Y Tsarfaty, Reut
%S Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F jung-2021-commitbert
%X Commit message is a document that summarizes source code changes in natural language. A good commit message clearly shows the source code changes, so this enhances collaboration between developers. Therefore, our work is to develop a model that automatically writes the commit message. To this end, we release 345K datasets consisting of code modification and commit messages in six programming languages (Python, PHP, Go, Java, JavaScript, and Ruby). Similar to the neural machine translation (NMT) model, using our dataset, we feed the code modification to the encoder input and the commit message to the decoder input and measure the result of the generated commit message with BLEU-4. Also, we propose the following two training methods to improve the result of generating the commit message: (1) A method of preprocessing the input to feed the code modification to the encoder input. (2) A method that uses an initial weight suitable for the code domain to reduce the gap in contextual representation between programming language (PL) and natural language (NL).
%R 10.18653/v1/2021.nlp4prog-1.3
%U https://aclanthology.org/2021.nlp4prog-1.3
%U https://doi.org/10.18653/v1/2021.nlp4prog-1.3
%P 26-33
Markdown (Informal)
[CommitBERT: Commit Message Generation Using Pre-Trained Programming Language Model](https://aclanthology.org/2021.nlp4prog-1.3) (Jung, NLP4Prog 2021)
ACL