@inproceedings{yim-yetisgen-2021-towards,
title = "Towards Automating Medical Scribing : Clinic Visit {D}ialogue2{N}ote Sentence Alignment and Snippet Summarization",
author = "Yim, Wen-wai and
Yetisgen, Meliha",
editor = "Shivade, Chaitanya and
Gangadharaiah, Rashmi and
Gella, Spandana and
Konam, Sandeep and
Yuan, Shaoqing and
Zhang, Yi and
Bhatia, Parminder and
Wallace, Byron",
booktitle = "Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nlpmc-1.2/",
doi = "10.18653/v1/2021.nlpmc-1.2",
pages = "10--20",
abstract = "Medical conversations from patient visits are routinely summarized into clinical notes for documentation of clinical care. The automatic creation of clinical note is particularly challenging given that it requires summarization over spoken language and multiple speaker turns; as well, clinical notes include highly technical semi-structured text. In this paper, we describe our corpus creation method and baseline systems for two NLP tasks, clinical dialogue2note sentence alignment and clinical dialogue2note snippet summarization. These two systems, as well as other models created from such a corpus, may be incorporated as parts of an overall end-to-end clinical note generation system."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yim-yetisgen-2021-towards">
<titleInfo>
<title>Towards Automating Medical Scribing : Clinic Visit Dialogue2Note Sentence Alignment and Snippet Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wen-wai</namePart>
<namePart type="family">Yim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meliha</namePart>
<namePart type="family">Yetisgen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chaitanya</namePart>
<namePart type="family">Shivade</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Gangadharaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spandana</namePart>
<namePart type="family">Gella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandeep</namePart>
<namePart type="family">Konam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaoqing</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parminder</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Byron</namePart>
<namePart type="family">Wallace</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Medical conversations from patient visits are routinely summarized into clinical notes for documentation of clinical care. The automatic creation of clinical note is particularly challenging given that it requires summarization over spoken language and multiple speaker turns; as well, clinical notes include highly technical semi-structured text. In this paper, we describe our corpus creation method and baseline systems for two NLP tasks, clinical dialogue2note sentence alignment and clinical dialogue2note snippet summarization. These two systems, as well as other models created from such a corpus, may be incorporated as parts of an overall end-to-end clinical note generation system.</abstract>
<identifier type="citekey">yim-yetisgen-2021-towards</identifier>
<identifier type="doi">10.18653/v1/2021.nlpmc-1.2</identifier>
<location>
<url>https://aclanthology.org/2021.nlpmc-1.2/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>10</start>
<end>20</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Automating Medical Scribing : Clinic Visit Dialogue2Note Sentence Alignment and Snippet Summarization
%A Yim, Wen-wai
%A Yetisgen, Meliha
%Y Shivade, Chaitanya
%Y Gangadharaiah, Rashmi
%Y Gella, Spandana
%Y Konam, Sandeep
%Y Yuan, Shaoqing
%Y Zhang, Yi
%Y Bhatia, Parminder
%Y Wallace, Byron
%S Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F yim-yetisgen-2021-towards
%X Medical conversations from patient visits are routinely summarized into clinical notes for documentation of clinical care. The automatic creation of clinical note is particularly challenging given that it requires summarization over spoken language and multiple speaker turns; as well, clinical notes include highly technical semi-structured text. In this paper, we describe our corpus creation method and baseline systems for two NLP tasks, clinical dialogue2note sentence alignment and clinical dialogue2note snippet summarization. These two systems, as well as other models created from such a corpus, may be incorporated as parts of an overall end-to-end clinical note generation system.
%R 10.18653/v1/2021.nlpmc-1.2
%U https://aclanthology.org/2021.nlpmc-1.2/
%U https://doi.org/10.18653/v1/2021.nlpmc-1.2
%P 10-20
Markdown (Informal)
[Towards Automating Medical Scribing : Clinic Visit Dialogue2Note Sentence Alignment and Snippet Summarization](https://aclanthology.org/2021.nlpmc-1.2/) (Yim & Yetisgen, NLPMC 2021)
ACL