@inproceedings{van-aken-etal-2021-assertion,
title = "Assertion Detection in Clinical Notes: Medical Language Models to the Rescue?",
author = "van Aken, Betty and
Trajanovska, Ivana and
Siu, Amy and
Mayrdorfer, Manuel and
Budde, Klemens and
Loeser, Alexander",
editor = "Shivade, Chaitanya and
Gangadharaiah, Rashmi and
Gella, Spandana and
Konam, Sandeep and
Yuan, Shaoqing and
Zhang, Yi and
Bhatia, Parminder and
Wallace, Byron",
booktitle = "Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nlpmc-1.5/",
doi = "10.18653/v1/2021.nlpmc-1.5",
pages = "35--40",
abstract = "In order to provide high-quality care, health professionals must efficiently identify the presence, possibility, or absence of symptoms, treatments and other relevant entities in free-text clinical notes. Such is the task of assertion detection - to identify the assertion class (present, possible, absent) of an entity based on textual cues in unstructured text. We evaluate state-of-the-art medical language models on the task and show that they outperform the baselines in all three classes. As transferability is especially important in the medical domain we further study how the best performing model behaves on unseen data from two other medical datasets. For this purpose we introduce a newly annotated set of 5,000 assertions for the publicly available MIMIC-III dataset. We conclude with an error analysis that reveals situations in which the models still go wrong and points towards future research directions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-aken-etal-2021-assertion">
<titleInfo>
<title>Assertion Detection in Clinical Notes: Medical Language Models to the Rescue?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Betty</namePart>
<namePart type="family">van Aken</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivana</namePart>
<namePart type="family">Trajanovska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amy</namePart>
<namePart type="family">Siu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manuel</namePart>
<namePart type="family">Mayrdorfer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Klemens</namePart>
<namePart type="family">Budde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Loeser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chaitanya</namePart>
<namePart type="family">Shivade</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Gangadharaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spandana</namePart>
<namePart type="family">Gella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandeep</namePart>
<namePart type="family">Konam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaoqing</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parminder</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Byron</namePart>
<namePart type="family">Wallace</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In order to provide high-quality care, health professionals must efficiently identify the presence, possibility, or absence of symptoms, treatments and other relevant entities in free-text clinical notes. Such is the task of assertion detection - to identify the assertion class (present, possible, absent) of an entity based on textual cues in unstructured text. We evaluate state-of-the-art medical language models on the task and show that they outperform the baselines in all three classes. As transferability is especially important in the medical domain we further study how the best performing model behaves on unseen data from two other medical datasets. For this purpose we introduce a newly annotated set of 5,000 assertions for the publicly available MIMIC-III dataset. We conclude with an error analysis that reveals situations in which the models still go wrong and points towards future research directions.</abstract>
<identifier type="citekey">van-aken-etal-2021-assertion</identifier>
<identifier type="doi">10.18653/v1/2021.nlpmc-1.5</identifier>
<location>
<url>https://aclanthology.org/2021.nlpmc-1.5/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>35</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Assertion Detection in Clinical Notes: Medical Language Models to the Rescue?
%A van Aken, Betty
%A Trajanovska, Ivana
%A Siu, Amy
%A Mayrdorfer, Manuel
%A Budde, Klemens
%A Loeser, Alexander
%Y Shivade, Chaitanya
%Y Gangadharaiah, Rashmi
%Y Gella, Spandana
%Y Konam, Sandeep
%Y Yuan, Shaoqing
%Y Zhang, Yi
%Y Bhatia, Parminder
%Y Wallace, Byron
%S Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F van-aken-etal-2021-assertion
%X In order to provide high-quality care, health professionals must efficiently identify the presence, possibility, or absence of symptoms, treatments and other relevant entities in free-text clinical notes. Such is the task of assertion detection - to identify the assertion class (present, possible, absent) of an entity based on textual cues in unstructured text. We evaluate state-of-the-art medical language models on the task and show that they outperform the baselines in all three classes. As transferability is especially important in the medical domain we further study how the best performing model behaves on unseen data from two other medical datasets. For this purpose we introduce a newly annotated set of 5,000 assertions for the publicly available MIMIC-III dataset. We conclude with an error analysis that reveals situations in which the models still go wrong and points towards future research directions.
%R 10.18653/v1/2021.nlpmc-1.5
%U https://aclanthology.org/2021.nlpmc-1.5/
%U https://doi.org/10.18653/v1/2021.nlpmc-1.5
%P 35-40
Markdown (Informal)
[Assertion Detection in Clinical Notes: Medical Language Models to the Rescue?](https://aclanthology.org/2021.nlpmc-1.5/) (van Aken et al., NLPMC 2021)
ACL