
What Taggers Fail to Learn, Parsers Need the Most

Mark Anderson Carlos Gómez-Rodrı́guez
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Abstract

We present an error analysis of neural
UPOS taggers to evaluate why using gold
standard tags has such a large positive con-
tribution to parsing performance while us-
ing predicted UPOS tags either harms per-
formance or offers a negligible improve-
ment. We evaluate what neural dependency
parsers implicitly learn about word types
and how this relates to the errors taggers
make to explain the minimal impact us-
ing predicted tags has on parsers. We also
present a short analysis on what contexts
result in reductions in tagging performance.
We then mask UPOS tags based on errors
made by taggers to tease away the contribu-
tion of UPOS tags which taggers succeed
and fail to classify correctly and the impact
of tagging errors.

1 Introduction

Part-of-speech (POS) tags have commonly been
used as input features for dependency parsers. They
were especially useful for non-neural implementa-
tions (Voutilainen, 1998; Dalrymple, 2006; Alfared
and Béchet, 2012). However, the efficacy of POS
tags for neural network dependency parsers is less
apparent especially when utilising character embed-
dings (Ballesteros et al., 2015; de Lhoneux et al.,
2017). Universal POS (UPOS) tags have still been
seen to improve parsing performance but only if
the predicted tags come from a sufficiently accurate
tagger (Dozat et al., 2017).

Typically using predicted POS tags has offered a
nominal increase in performance or has had no
impact at all. Smith et al. (2018) undertook a
thorough systematic analysis of the interplay of
UPOS tags, character embeddings, and pre-trained
word embeddings for multi-lingual Universal De-
pendency (UD) parsing and found that tags offer

a marginal improvement for their transition based
parser. However, Zhang et al. (2020) found that
the only way to leverage POS tags (both coarse
and fine-grained) for English and Chinese depen-
dency parsing was to utilise them as an auxiliary
task in a multi-task framework. Further, Anderson
and Gómez-Rodrı́guez (2020) investigated the im-
pact UPOS tagging accuracy has on graph-based
and transition-based parsers and found that a pro-
hibitively high tagging accuracy was needed to
utilise predicted UPOS tags. Here we investigate
whether dependency parsers inherently learn simi-
lar word type information to taggers, and therefore
can only benefit from the hard to predict tags that
taggers fail to capture. We also investigate what
makes them hard to predict.

2 Methodology

We performed two experiments. The first was an at-
tempt to compare what biaffine parsers learn about
UPOS tags by fine-tuning them with tagging infor-
mation and comparing their errors with those from
normally trained UPOS taggers. The second ex-
periment attempted to evaluate the impact tagging
errors have by either masking errors or using the
gold standard tags for erroneously predicted tags
while masking all other tags.

Data We took a subset of UD v2.6 treebanks
consisting of 11 languages, all of which are from
different language families (Zeman et al., 2020):
Arabic PADT (ar), Basque BDT (eu), Finnish TDT
(fi), Indonesian GSD (id), Irish IDT (ga), Japanese
GSD (ja), Korean Kaist (ko), Tamil TTB (ta), Turk-
ish IMST (tr), Vietnamese VTB (vi), and Wolof
WTB (wo). We used pre-trained word embeddings
from fastText (for Wolof we had to use the previ-
ous Wiki version) (Bojanowski et al., 2017; Grave
et al., 2018). We compressed the word embeddings
to 100 dimensions with PCA.



Tagger Tagger-FT Parser

Arabic 96.71 96.52 93.73
Basque 95.35 95.18 88.09
Finnish 96.92 96.62 92.24
Indonesian 93.72 93.79 91.98
Irish 92.84 92.80 88.24
Japanese 97.94 97.85 92.80
Korean 95.09 94.26 86.93
Tamil 89.29 87.28 75.41
Turkey 95.10 94.98 86.14
Vietnamese 87.85 87.63 83.40
Wolof 93.85 93.79 85.81

Table 1: Tagging accuracies for tagger trained nor-
mally (Tagger), “fine-tuning” a newly initialised
MLP for the trained taggers (Tagger-FT), and for
parsers fine-tuned to predict tags (Parser).

Experiment 1: Error crossover We trained
parsers and taggers on the subset of UD treebanks
described above. We then took the parser network
and replaced the biaffine structure with a multi-
layer perceptron (MLP) to predict UPOS tags. We
froze the network except for the MLP and fine-
tuned the MLP with one epoch of learning, which
is similar to the process used in Vania et al. (2019).
We train for only one epoch to balance training
the MLP to decode what the system already has
encoded without giving it the opportunity to en-
code more information. We repeated this for the
tagger networks (replacing their MLP with a ran-
domly initialised MLP) to validate this fine-tuning
procedure. We then compared the tagging errors
of both the parsers fine-tuned for tagging and the
original taggers. We also undertook an analysis of
the errors from the normal taggers which included
looking at the impact out-of-vocabulary, POS tag
context, and a narrow syntactic context. We define
the contexts in Section 3.

Experiment 2: Masked tags We then used the
output from the taggers from Experiment 1 to train
different parsers. We trained parsers using all the
predicted tags, using only the gold standard tags
the taggers failed to predict (for both the standard
taggers and parsers fine-tuned for tagging), using
predicted tags from the standard taggers but mask-
ing the errors, and training with all gold standard
tags. Note that the respective sets of POS tags were
used at both training and inference time. We also
trained parsers with no tags as a baseline.

Network details Both the taggers and parsers
use pre-trained word embeddings and randomly-
initialised character embeddings. The parsers use

Figure 1: Average union of tagging errors for
parser fine-tuned for tagging and fully-trained tag-
ger (standard deviation: 159 for tagger error, 715
for parser, and 242 for union).

UPOS tag embeddings as specified in the experi-
mental details. The character and tag embeddings
are randomly initialised. The parsers consist of
the embedding layer followed by BiLSTM layers
and then a biaffine mechanism (Dozat and Man-
ning, 2017). The taggers are similar but with an
MLP following the BiLSTMs instead. We ran a
small hyperparameter search using fi, ga, tr, and
wo and using their respective development data.
This resulted in 3 BiLSTM layers with 200 nodes,
100 dimensions for each embedding type with 100
dimension input to the character LSTM. The arc
MLP of the biaffine structure had 100 dimensions,
50 for the relation MLP. Dropout was 0.33 for all
layers. Learning rate was 2×10−3, β1 and β2 were
0.9, batch size was 30, and we trained both taggers
and parsers for 200 epochs but with early stopping
if no improvement was seen after 20 epochs. Mod-
els were selected based on the performance on the
development set.

3 Results and discussion

Experiment 1: Error crossover Table 1 shows
the tagging performance for the normally trained
taggers, the re-fine-tuned taggers, and the fine-
tuned parser taggers. The re-fine-tuned taggers
achieve relatively similar performance to the orig-
inal taggers, which suggests that this procedure
does allow us to develop a decoder that captures

All Open Closed Other

Tagger 8,637 6,434 1,867 336
Parser 18,426 15,181 2,816 429

Total 171,373 101,965 46,362 23,046

Table 2: Error (Parser, Tagger) and total (Total)
counts across all data per word class of gold tag.



Error Types Errors Tokens

ar noun→x 197 x→noun 139 noun→adj 108 adj→x 78 adj→noun 60 931 28.3K
eu propn→noun 145 verb→aux 113 noun→adj 101 aux→verb 100 adj→noun 94 1134 24.4K
fi propn→noun 56 noun→propn 53 noun→adj 43 adj→noun 39 noun→verb 37 649 21.1K
id propn→noun 147 noun→propn 92 adj→noun 47 noun→adj 34 verb→noun 23 740 11.8K
ga propn→noun 184 noun→propn 53 noun→adj 53 adj→noun 38 noun→pron 36 724 10.1K
ja noun→adv 52 propn→noun 24 noun→adj 22 adj→noun 22 aux→verb 20 269 13.0K
ko noun→propn 252 propn→noun 145 verb→adj 133 aux→verb 78 cconj→sconj 75 1394 28.4K
ta noun→propn 24 aux→verb 22 propn→noun 17 noun→verb 12 adj→adp 12 213 2.0K
tr noun→adj 54 propn→noun 52 noun→verb 37 noun→propn 35 adv→adj 31 491 10.0K
vi noun→verb 201 verb→noun 152 noun→adj 151 verb→adj 140 verb→x 83 1452 12.0K
wo noun→propn 71 verb→noun 57 pron→det 46 noun→verb 38 verb→aux 30 640 10.4K

Table 3: Top 5 most common errors and their number of occurrences for each treebank. Also shown are
the total number of errors and token count for each treebank.

what the BiLSTM and embedding layers learn
about UPOS tags without adding new information.
Clearly more training would likely improve the
parsers fine-tuned for tagging, but it would be less
clear if that would be extracting information the
parser previously learnt or adding more informa-
tion via MLP weights.

Figure 1 shows the average cross-over of spe-
cific error occurrences for the two systems, where
only 38% of the tagger’s errors don’t occur for the
parser. Table 2 shows the breakdown of errors from
each system by word type class for all treebanks.
The ratio of the errors is substantially different for
each class: 0.42 for open, 0.66 for closed, 0.78 for

F1-score
Tagger Parser Tokens Class

PUNCT 99.94 99.93 19.9K
OtherSYM 97.83 0.00 0.2K

X 76.37 54.51 2.6K

ADJ 87.98 74.98 9.4K

Open

ADV 93.94 89.97 8.5K
INTJ 40.91 0.00 0.1K
NOUN 95.49 94.63 43.7K
PROPN 90.21 57.49 9.0K
VERB 94.80 94.05 21.5

ADP 97.77 94.14 9.9K

Closed

AUX 96.37 93.65 6.8K
CCONJ 96.30 94.29 7.3K
DET 94.73 86.88 4.2K
NUM 93.96 78.12 4.4K
PART 90.49 76.88 1.7K
PRON 96.31 72.46 6.0K
SCONJ 93.15 91.22 3.2K

Table 4: F1-score for separate tags clustered by
word type class with ”Other” at the top, ”Open”
in the middle, and ”Closed” at the bottom for all
tokens in the collection of treebanks used. Also
reported are the total number of tokens for each tag
type present across all treebanks (Tokens).

other. This perhaps suggests that the parser has
a tendency to learn more syntactically fixed word
types than open types. Table 4 shows the F1-score
for each UPOS for both systems. For the most
part the parser is pretty close to the tagger for open
class tags, except for INTJ which the parser never
predicts, PROPN (32.7 less for the parser), and to a
lesser extent ADJ (13.0 less). Table 3 shows the top
5 most common errors per treebank for the normal
taggers where PROPN appears in 15 error types
and ADJ appears in 19 out of 55. This prevalence
combined with the parsers’ poor performance for
these tags suggests that errors containing these tags
are especially impactful for parsers when using pre-
dicted UPOS. However, it could also be that the
parsers perform poorly on predicting PROPN tags
as they occur in similar syntactic roles as NOUN
tokens and as such aren’t as important for syntactic
analysis.

For the closed class type tags, again the parser
performs similarly to the tagger but obtains a few
points less except for DET, NUM, PART, and PRON
with drops for parser scores of 7.9, 15.8, 13.6, and
23.9, respectively. However, of these 4 tags, only
PRON and DET appear in the most common errors
and only twice and once, respectively. The most
common tag to appear in an error is NOUN occur-
ring 41 times, but there is less than one point in dif-
ference between the tagger’s performance and the
parser’s for NOUN. Of these 41 appearances, 14 co-
occur with ADJ and 15 with PROPN with a fairly
even split of mis-tagging NOUN as either of these
tags or the other way around. So generally NOUN
tokens are fairly easy to tag, but the times where the
tagger fails are typically where there is confusion
with ADJ and PROPN tags. Figure 2 shows statis-
tical metrics of the taggers’ errors. First we show
the proportion of out-of-vocabulary (OOV) word



Figure 2: Measurements of all tags (red) and error (blue) tags for OOV proportion, POS bigram surprisal
(〈I〉, 〈I〉-errors), and head POS and relation surprisal (〈IH〉, 〈IH〉-errors).

forms for all tokens and also the tokens where the
tagger makes an error. Consistently across all tree-
banks the OOV proportion is considerably higher
for tokens erroneously tagged. Second we report
the mean UPOS surprisal. For a given UPOS tag,
θn for token n, the surprisal of that UPOS tag in a
given context, ck is given as:

I(θn) = − log2 p(θn|ck) (1)

where we use a bigram context:

ck = (θn−2, θn−1) (2)

Then the mean surprisal, 〈I〉, over a sample of
tokens is given as:

〈I〉 = 1

N

∑
n∈N

I(θn) (3)

where N is the number of tokens in the sample.
Again, the mean tag surprisal is substantially dif-
ferent across all treebanks for the tokens where the
tagger makes a mistake in comparison to the aver-
age over the entire treebank. Finally we report the
mean surprisal of UPOS but with the context of its
head’s tag and the syntactic relation joining the two
tokens, such that ck is defined as:

ck = (θhead, rel) (4)

The difference between the error sub-sample and
the whole treebank is starker for the head-relation
surprisal, suggesting that the tagger struggles more
when the syntactic structure is uncommon.

Experiment 2: Masked tags Table 5 shows the
labelled attachment scores for parsers with varying
types of UPOS input. First we use the predicted
output from the normal taggers from Experiment 1
(Pred) and unlike Anderson and Gómez-Rodrı́guez
(2020) we observe a slight increase over using no

UPOS tags. However, using predicted tags isn’t uni-
versally beneficial. Arabic, Indonesian, Japanese,
and Tamil all perform better with no tags.

We then used gold standard tags but masking
the tags that the taggers correctly predicted to test
if the erroneous tags are particularly useful. We
did this for the normal taggers (M¬ET) and also
for the fine-tuned parsers (M¬EP). The average in-
crease for both is about 2.5 over the no tag baseline
and over 2 points better than using predicted tags.
Also, the improvement is universal with at least a
small increase in performance over using predicted
UPOS tags. Interestingly the smaller set from the
tagger outperforms the larger set from the parser by
0.15, suggesting that what both the taggers and the
parsers fail to capture is more important than the
errors unique to the parsers. We then masked the
errors from the taggers (M∀ET) to test if avoiding
adding errors would still be beneficial. The per-
formance is almost 2 points better than using the

None Pred. M¬ET M¬EP M∀ET Gold

ar 83.29 82.87 84.17 84.06 84.45 84.73
eu 81.12 81.14 82.33 82.62 83.13 84.45
fi 85.96 86.04 86.88 87.09 87.61 88.80
id 79.04 78.95 82.20 82.69 81.08 82.95
ga 76.13 76.57 76.62 76.65 77.46 77.90
ja 93.15 92.72 94.41 94.38 94.39 95.30
ko 85.40 85.86 87.53 87.82 87.44 88.52
ta 65.61 64.50 70.24 66.67 66.01 71.95
tr 66.67 67.68 67.62 67.66 67.84 68.86
vi 58.43 60.09 65.42 66.75 65.18 70.87
wo 77.87 78.49 82.03 81.39 81.11 85.41

avg 77.52 77.72 79.95 79.80 79.61 81.79

Table 5: LAS parser performance with no tags
(None), with predicted tags (Pred), gold standard
tags but with all tags masked except those the re-
spective taggers predicted wrong (M¬ET), sim-
ilarly for the tagging errors from the fine-tuned
parser (M¬EP), masking the errors from the tagger
(M∀ET), and finally using all gold standard tags.



predicted tags and again an increase is observed for
all treebanks. This could be of use, as it is easy to
envisage a tagger which learns to predict tags when
a prediction is clear and to predict nothing when
the probability is low. Finally, using gold standard
tags is nearly 2 points better on average than the
best masked tag model, which suggests that to fully
utilise the information in the final few percentage
that taggers miss, the full set of easy to predict tags
are needed.

4 Conclusion
We have presented results which suggest that
parsers do learn something of word types and that
what taggers fail to learn is needed to augment
that knowledge. We have evaluated the nature of
typical tagging errors for a diverse subset of UD
treebanks and highlighted consistent error types
and also what statistical features they have com-
pared to the average measurement across all tokens
in a treebank. We have shown that it would be more
beneficial to implement taggers to not only predict
tags but also decide when to do so, as the errors un-
dermine anything gained from using predicted tags
for dependency parsers. Note that while we only
used one parser system, the original paper (Ander-
son and Gómez-Rodrı́guez, 2020) which prompted
this work observed similar behaviour with regard
to predicted UPOS tags for both the system used
here (graph-based) and a neural transition-based
parser, suggesting that the results discussed here
might extend to other parsing systems. And while
it is true that we have only investigated one POS
tagger system, we feel we have been careful in not
making egregiously grand claims of the universal-
ity of our findings: it is merely one data point to be
considered amongst many.
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