@inproceedings{anderson-gomez-rodriguez-2021-taggers,
title = "What Taggers Fail to Learn, Parsers Need the Most",
author = "Anderson, Mark and
G{\'o}mez-Rodr{\'\i}guez, Carlos",
editor = "Dobnik, Simon and
{\O}vrelid, Lilja",
booktitle = "Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)",
month = may # " 31--2 " # jun,
year = "2021",
address = "Reykjavik, Iceland (Online)",
publisher = {Link{\"o}ping University Electronic Press, Sweden},
url = "https://aclanthology.org/2021.nodalida-main.31",
pages = "309--314",
abstract = "We present an error analysis of neural UPOS taggers to evaluate why using gold tags has such a large positive contribution to parsing performance while using predicted UPOS either harms performance or offers a negligible improvement. We also evaluate what neural dependency parsers implicitly learn about word types and how this relates to the errors taggers make, to explain the minimal impact using predicted tags has on parsers. We then mask UPOS tags based on errors made by taggers to tease away the contribution of UPOS tags that taggers succeed and fail to classify correctly and the impact of tagging errors.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="anderson-gomez-rodriguez-2021-taggers">
<titleInfo>
<title>What Taggers Fail to Learn, Parsers Need the Most</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Anderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Gómez-Rodríguez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-may 31–2 jun</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lilja</namePart>
<namePart type="family">Øvrelid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press, Sweden</publisher>
<place>
<placeTerm type="text">Reykjavik, Iceland (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present an error analysis of neural UPOS taggers to evaluate why using gold tags has such a large positive contribution to parsing performance while using predicted UPOS either harms performance or offers a negligible improvement. We also evaluate what neural dependency parsers implicitly learn about word types and how this relates to the errors taggers make, to explain the minimal impact using predicted tags has on parsers. We then mask UPOS tags based on errors made by taggers to tease away the contribution of UPOS tags that taggers succeed and fail to classify correctly and the impact of tagging errors.</abstract>
<identifier type="citekey">anderson-gomez-rodriguez-2021-taggers</identifier>
<location>
<url>https://aclanthology.org/2021.nodalida-main.31</url>
</location>
<part>
<date>2021-may 31–2 jun</date>
<extent unit="page">
<start>309</start>
<end>314</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What Taggers Fail to Learn, Parsers Need the Most
%A Anderson, Mark
%A Gómez-Rodríguez, Carlos
%Y Dobnik, Simon
%Y Øvrelid, Lilja
%S Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)
%D 2021
%8 may 31–2 jun
%I Linköping University Electronic Press, Sweden
%C Reykjavik, Iceland (Online)
%F anderson-gomez-rodriguez-2021-taggers
%X We present an error analysis of neural UPOS taggers to evaluate why using gold tags has such a large positive contribution to parsing performance while using predicted UPOS either harms performance or offers a negligible improvement. We also evaluate what neural dependency parsers implicitly learn about word types and how this relates to the errors taggers make, to explain the minimal impact using predicted tags has on parsers. We then mask UPOS tags based on errors made by taggers to tease away the contribution of UPOS tags that taggers succeed and fail to classify correctly and the impact of tagging errors.
%U https://aclanthology.org/2021.nodalida-main.31
%P 309-314
Markdown (Informal)
[What Taggers Fail to Learn, Parsers Need the Most](https://aclanthology.org/2021.nodalida-main.31) (Anderson & Gómez-Rodríguez, NoDaLiDa 2021)
ACL
- Mark Anderson and Carlos Gómez-Rodríguez. 2021. What Taggers Fail to Learn, Parsers Need the Most. In Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa), pages 309–314, Reykjavik, Iceland (Online). Linköping University Electronic Press, Sweden.