@inproceedings{karamolegkou-stymne-2021-investigation,
title = "Investigation of Transfer Languages for Parsing {L}atin: Italic Branch vs. {H}ellenic Branch",
author = "Karamolegkou, Antonia and
Stymne, Sara",
editor = "Dobnik, Simon and
{\O}vrelid, Lilja",
booktitle = "Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)",
month = may # " 31--2 " # jun,
year = "2021",
address = "Reykjavik, Iceland (Online)",
publisher = {Link{\"o}ping University Electronic Press, Sweden},
url = "https://aclanthology.org/2021.nodalida-main.32",
pages = "315--320",
abstract = "Choosing a transfer language is a crucial step in transfer learning. In much previous research on dependency parsing, related languages have successfully been used. However, when parsing Latin, it has been suggested that languages such as ancient Greek could be helpful. In this work we parse Latin in a low-resource scenario, with the main goal to investigate if Greek languages are more helpful for parsing Latin than related Italic languages, and show that this is indeed the case. We further investigate the influence of other factors including training set size and content as well as linguistic distances. We find that one explanatory factor seems to be the syntactic similarity between Latin and Ancient Greek. The influence of genres or shared annotation projects seems to have a smaller impact.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="karamolegkou-stymne-2021-investigation">
<titleInfo>
<title>Investigation of Transfer Languages for Parsing Latin: Italic Branch vs. Hellenic Branch</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antonia</namePart>
<namePart type="family">Karamolegkou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Stymne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-may 31–2 jun</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lilja</namePart>
<namePart type="family">Øvrelid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press, Sweden</publisher>
<place>
<placeTerm type="text">Reykjavik, Iceland (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Choosing a transfer language is a crucial step in transfer learning. In much previous research on dependency parsing, related languages have successfully been used. However, when parsing Latin, it has been suggested that languages such as ancient Greek could be helpful. In this work we parse Latin in a low-resource scenario, with the main goal to investigate if Greek languages are more helpful for parsing Latin than related Italic languages, and show that this is indeed the case. We further investigate the influence of other factors including training set size and content as well as linguistic distances. We find that one explanatory factor seems to be the syntactic similarity between Latin and Ancient Greek. The influence of genres or shared annotation projects seems to have a smaller impact.</abstract>
<identifier type="citekey">karamolegkou-stymne-2021-investigation</identifier>
<location>
<url>https://aclanthology.org/2021.nodalida-main.32</url>
</location>
<part>
<date>2021-may 31–2 jun</date>
<extent unit="page">
<start>315</start>
<end>320</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Investigation of Transfer Languages for Parsing Latin: Italic Branch vs. Hellenic Branch
%A Karamolegkou, Antonia
%A Stymne, Sara
%Y Dobnik, Simon
%Y Øvrelid, Lilja
%S Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)
%D 2021
%8 may 31–2 jun
%I Linköping University Electronic Press, Sweden
%C Reykjavik, Iceland (Online)
%F karamolegkou-stymne-2021-investigation
%X Choosing a transfer language is a crucial step in transfer learning. In much previous research on dependency parsing, related languages have successfully been used. However, when parsing Latin, it has been suggested that languages such as ancient Greek could be helpful. In this work we parse Latin in a low-resource scenario, with the main goal to investigate if Greek languages are more helpful for parsing Latin than related Italic languages, and show that this is indeed the case. We further investigate the influence of other factors including training set size and content as well as linguistic distances. We find that one explanatory factor seems to be the syntactic similarity between Latin and Ancient Greek. The influence of genres or shared annotation projects seems to have a smaller impact.
%U https://aclanthology.org/2021.nodalida-main.32
%P 315-320
Markdown (Informal)
[Investigation of Transfer Languages for Parsing Latin: Italic Branch vs. Hellenic Branch](https://aclanthology.org/2021.nodalida-main.32) (Karamolegkou & Stymne, NoDaLiDa 2021)
ACL