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Abstract

Most work in NLP makes the assumption
that it is desirable to develop solutions in
the native language in question. There is
consequently a strong trend towards build-
ing native language models even for low-
resource languages. This paper questions
this development, and explores the idea of
simply translating the data into English,
thereby enabling the use of pretrained, and
large-scale, English language models. We
demonstrate empirically that a large En-
glish language model coupled with mod-
ern machine translation outperforms native
language models in most Scandinavian lan-
guages. The exception to this is Finnish,
which we assume is due to inferior trans-
lation quality. Our results suggest that ma-
chine translation is a mature technology,
which raises a serious counter-argument
for training native language models for low-
resource languages. This paper therefore
strives to make a provocative but impor-
tant point. As English language models
are improving at an unprecedented pace,
which in turn improves machine translation,
it is from an empirical and environmental
stand-point more effective to translate data
from low-resource languages into English,
than to build language models for such lan-
guages.

1 Introduction

Although the Transformer architecture for deep
learning was only recently introduced (Vaswani
et al., 2017), it has had a profound impact on the de-
velopment in Natural Language Processing (NLP)
during the last couple of years. Starting with the
seminal BERT model (Devlin et al., 2019), we have
witnessed an unprecedented development of new

model variations (Yang et al., 2019; Clark et al.,
2020; Raffel et al., 2020; Radford et al., 2019;
Brown et al., 2020) with new State Of The Art
(SOTA) results being produced in all types of NLP
benchmarks (Wang et al., 2018, 2019; Nie et al.,
2020).

The leading models are large both with respect to
the number of parameters and the size of the train-
ing data used to build the model; this correlation be-
tween size and performance has been demonstrated
by Kaplan et al. (2020). The ongoing scale race
has culminated in the 175-billion parameter model
GPT-3, which was trained on some 45TB of data
summing to around 500 billion tokens (Brown et al.,
2020).1 Turning to the Scandinavian languages,
there are no such truly large-scale models avail-
able. At the time of writing, there are around 300
Scandinavian models available in the Hugging Face
Transformers model repository.2 Most of these are
translation models, but there is already a signifi-
cant number of monolingual models available in
the Scandinavian languages.3

However, none of these Scandinavian language
models are even close to the currently leading En-
glish models in parameter size or training data used.
As such, we can expect that their relative perfor-
mance in comparison with the leading English mod-
els is significantly worse. Furthermore, we can
expect that the number of monolingual Scandina-
vian models will continue to grow at an exponential
pace during the near future. The question is: do
we need all these models? Or even: do we need
any of these models? Can’t we simply translate
our data and tasks to English and use some suitable
English SOTA model to solve the problem? This
paper provides an empirical study of this idea.

1The currently largest English model contains 1.6 trillion
parameters (Fedus et al., 2021).

2huggingface.co/models
3At the time of submission, there are 17 monolingual

Swedish models available.



Language Vocab size Lexical richness Avg. word length Avg. sentence length
Swedish 31,478 0.07 4.39 14.75
Norwegian 26,168 0.06 4.21 14.10
Danish 42,358 0.06 4.17 19.55
Finnish 34,729 0.14 5.84 10.69
English 27,610 0.04 3.99 16.87

Table 1: The vocabulary size, Lexical richness, average word length and average sentence length for the
Trustpilot sentiment data of each language.

2 Related work

There is already a large, and rapidly growing, liter-
ature on the use of multilingual models (Conneau
et al., 2020a; Xue et al., 2020), and on the possi-
bility to achieve cross-lingual transfer in multilin-
gual language models (Ruder et al., 2019; Artetxe
et al., 2020; Lauscher et al., 2020; Conneau et al.,
2020b; Karthikeyan et al., 2020; Nooralahzadeh
et al., 2020). From this literature, we know among
other things that multilingual models tend to be
competitive in comparison with monolingual ones,
and that especially languages with smaller amounts
of training data available can benefit significantly
from transfer effects from related languages with
more training data available. This line of study fo-
cuses on the possibility to transfer models to a new
language, and thereby facilitating the application
of the model to data in the original language.

By contrast, our interest is to transfer the data
to another language, thereby enabling the use of
SOTA models to solve whatever task we are in-
terested in. We are only aware of one previous
study in this direction: Duh et al. (2011) performs
cross-lingual machine translation using outdated
methods, resulting in the claim that even if per-
fect translation would be possible, we will still see
degradation of performance. In this paper, we use
modern machine translation methods, and demon-
strate empirically that no degradation of perfor-
mance is observable when using large SOTA mod-
els.

3 Data

In order to be able to use comparable data in the
languages under consideration (Swedish, Danish,
Norwegian, and Finnish), we contribute a Scandina-
vian sentiment corpus (ScandiSent),4 consisting of
data downloaded from trustpilot.com. For each
language, the corresponding subdomain was used

4https://github.com/timpal0l/ScandiSent

to gather reviews with an associated text. This data
covers a wide range of topics and are divided into
22 different categories, such as electronics, sports,
travel, food, health etc. The reviews are evenly
distributed among all categories for each language.

All reviews have a corresponding rating in the
range 1 − 5. The review ratings were polarised
into binary labels, and the reviews which received
neutral rating were discarded. Ratings with 4 or
5 thus corresponds to a positive label, and 1 or 2
correspond to a negative label.

To further improve the quality of the data, we ap-
ply fastText’s language identification model (Joulin
et al., 2016) to filter out any reviews containing
incorrect language. This results in a balanced set of
10,000 texts for each language, with 7,500 samples
for training and 2,500 for testing. Table 1 sum-
marizes statistics for the various datasets of each
respective language.

3.1 Translation
For all the Nordic languages we generate a cor-
responding English dataset by direct Machine
Translation, using the Neural Machine Translation
(NMT) model provided by Google.5 To justifiably
isolate the effects of modern day machine trans-
lation, we restrict the translation to be executed
in prior to all experiments. This means that all
translation is executed prior to any fine-tuning, and
that the translation model is not updated during
training.

4 Models

In order to fairly select a representative pre-trained
model for each considered Scandinavian language,
we opt for the most popular native model according
to Hugging Face. For each considered language,
this corresponds to a BERT-Base model, hence
each language is represented by a Language Model

5https://cloud.google.com/translate/docs/advanced/translating-
text-v3



Model name in Hugging Face Language Data size
KB/bert-base-swedish-cased sv 3B tokens
TurkuNLP/bert-base-finnish-cased-v1 fi 3B tokens
ltgoslo/norbert no 2B tokens
DJSammy/bert-base-danish-uncased BotXO,ai da 1.6B tokens
bert-base-cased en 3.3B tokens
bert-base-cased-large en 3.3B tokens
xlm-roberta-large multi 295B tokens

Table 2: Models used in the experiments and the size of their corresponding training data. ’B’ is short for
billion.

Model sv no da fi en
BERT-sv 96.76 89.32 90.68 83.40 86.76
BERT-no 90.40 95.00 92.52 83.16 78.52
BERT-da 86.24 89.16 94.72 80.16 85.28
BERT-fi 90.24 86.36 87.72 95.72 84.32
BERT-en 85.72 87.60 87.72 84.16 96.08
BERT-en-Large 91.16 91.88 92.40 89.56 97.00

Translated Into English
BERT-sv 88.24 87.80 89.68 83.60 -
BERT-no 88.40 86.80 88.44 80.72 -
BERT-da 88.24 84.20 89.12 83.32 -
BERT-fi 90.04 90.08 89.36 86.04 -
BERT-en 95.76 95.48 95.96 92.96 -
BERT-en-Large 97.16 96.56 97.48 94.84 -

Table 3: Accuracy for monolingual models for the native sentiment data (upper part) and machine
translated data (lower part). Underlined results are the best results per language in using the native data,
while boldface marks the best results considering both native and machine translated data.

Model sv no da fi en
XLM-R-large 97.48 97.16 97.68 95.60 97.76

Translated Into English
XLM-R-large 97.04 96.84 98.24 95.48 -

Table 4: Accuracy on the various sentiment datasets using XLM-R-Large

of identical architecture. The difference between
these models is therefore mainly in the quantity and
type of texts used during training, in addition to
potential differences in training hyperparameters.

We compare these Scandinavian models against
the English BERT-Base and BERT-Large models
by Google. English BERT-Base is thus identical
in architecture to the Scandinavian models, while
BERT-Large is twice as deep and contains more
than three times the amount of parameters as BERT-
Base. Finally, we include XLM-R-Large, in order
to compare with a model trained on significantly
larger (and multilingual) training corpora.

Table 2 lists both the Scandinavian and English
models, together with the size of each models cor-
responding training corpus.

5 Experiments

5.1 Setup

We fine-tune and evaluate each model towards each
of the different sentiment datasets, using the hy-
perparameters listed in Appendix 5. From this we
report the binary accuracy, with the results for the
BERT models available in Table 3, and the XLM-R
results in Table 4.



5.2 Monolingual Results

The upper part of Table 3 shows the results us-
ing the original monolingual data. From this we
note a clear diagonal (marked by underline), where
the native models perform best in their own respec-
tive language. Bert-Large significantly outperforms
BERT-Base for all non-English datasets, and it also
performs slightly better on the original English
data.

Comparing these results with the amount of train-
ing data for each model (Table 1), we see a corre-
lation between performance and amount of pre-
training data. The Swedish, Finnish and English
models have been trained on the most amount of
data, leading to slightly higher performance in their
native languages. The Danish model which has
been trained on the least amount of data, performs
the worst on its own native language.

For the cross-lingual evaluation, BERT-Large
clearly outperforms all other non-native models.
The Swedish model reaches higher performance
on Norwegian and Finnish compared to the other
non-native Scandinavian models. However, the
Norwegian model performs best of the non-native
models on the Danish data. Finally, we observe an
interesting anomaly in the results on the English
data, where the Norwegian model performs consid-
erably worse than the other Scandinavian models.

5.3 Translation Results

The results for the machine translated data, avail-
able as the lower part of Table 3, show that BERT-
Large outperforms all native models on their native
data, with the exception of Finish. The English
BERT-Base reaches higher performance on the ma-
chine translated data than the Norwegian and Dan-
ish models on their respective native data. The
difference between English BERT-Base using the
machine translated data, and the Swedish BERT
using native data is about 1% unit.

As expected, all Scandinavian models perform
significantly worse on their respective machine
translated data. We find no clear trend among the
Scandinavian models when evaluated on translated
data from other languages. But we note that the
Danish model performs better on the machine trans-
lated Swedish data than on the original Swedish
data, and the Finnish model also improves its per-
formance on the other translated data sets (except
for Swedish). All models (except, of course, the
Finnish model) perform better on the machine trans-

lated Finnish data.
Finally, 4 shows the results from XLM-R-Large,

which has been trained on data several orders of
magnitude larger than the other models. XLM-R-
Large achieves top scores on the sentiment data
for all languages except for Finnish. We note
that XLM-R produces slightly better results on the
native data for Swedish, Norwegian and Finnish,
while the best result for Danish is produced on the
machine translated data.

6 Discussion & Conclusion

Our experiments demonstrate that it is possible to
reach better performance in a sentiment analysis
task by translating the data into English and using
a large pre-trained English language model, com-
pared to using data in the original language and a
smaller native language model. Whether this result
holds for other tasks as well remains to be shown,
but we see no theoretical reasons for why it would
not hold. We also find a strong correlation between
the quantity of pre-training data and downstream
performance. We note that XLM-R in particular
performs well, which may be due to data size, and
potentially the ability of the model to take advan-
tage of transfer effects between languages.

An interesting exception in our results is the
Finnish data, which is the only task for which the
native model performs best, despite XLM-R report-
edly having been trained on more Finnish data than
the native Finnish BERT model (Conneau et al.,
2020a). One hypothesis for this behavior can be
that the alleged transfer effects in XLM-R hold
primarily for typologically similar languages, and
that the performance on typologically unique lan-
guages, such as Finnish, may actually be negatively
affected by the transfer. The relatively bad perfor-
mance of BERT-Large on the translated Finnish
data is likely due to insufficient quality of the ma-
chine translation.

The proposed approach is thus obviously de-
pendent on the existence of a high-quality ma-
chine translation solution. The Scandinavian lan-
guages are typologically very similar both to each
other and to English, which probably explains the
good performance of the proposed approach even
when using a generic translation API. For other
languages, such as Finnish in our case, one would
probably need to be more careful in selecting a
suitable translation model. Whether the suggested
methodology will be applicable to other language



pairs thus depends on the quality of the transla-
tions and on the availability of large-scale language
models in the target language.

Our results can be seen as evidence for the matu-
rity of machine translation. Even using a generic
translation API, we can leverage the existence of
large-scale English language models to improve
the performance in comparison with building a so-
lution in the native language. This raises a seri-
ous counter-argument for the habitual practice in
applied NLP to develop native solutions to practi-
cal problems. Hence, we conclude with the some-
what provocative claim that it might be unnecessary
from an empirical standpoint to train models in lan-
guages where:

1. there exists high-quality machine translation
models to English,

2. there does not exist as much training data to
build a language model.

In such cases, we may be better off relying on
existing large-scale English models. This is a clear
case for practical applications, where it would be
beneficial to only host one large English model
and translate all various incoming requests from
different languages.
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2019. A survey of cross-lingual word embedding
models. Journal of Artificial Intelligence Research,
65:569–631.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008. Cur-
ran Associates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In Advances in Neural Infor-
mation Processing Systems, pages 3266–3280. Cur-
ran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts,
Mihir Kale, Rami Al-Rfou, Aditya Sid-
dhant, Aditya Barua, and Colin Raffel. 2020.
http://arxiv.org/abs/2010.11934 mT5: A massively
multilingual pre-trained text-to-text transformer.
ArXiv:2010.11934.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for

language understanding. In Advances in Neural
Information Processing Systems, volume 32, pages
5753–5763. Curran Associates, Inc.

A Training Details

Parameters Value
train epochs 2
early stopping false
optimizer AdamW
learning rate 4e-5
batch size 512
max seq length 128
max grad norm 1.0

Table 5: Training hyperparameters for the senti-
ment classification experiments.


