@inproceedings{wang-etal-2021-learning-similarity,
title = "Learning Similarity between Movie Characters and Its Potential Implications on Understanding Human Experiences",
author = "Wang, Zhilin and
Lin, Weizhe and
Wu, Xiaodong",
editor = "Akoury, Nader and
Brahman, Faeze and
Chaturvedi, Snigdha and
Clark, Elizabeth and
Iyyer, Mohit and
Martin, Lara J.",
booktitle = "Proceedings of the Third Workshop on Narrative Understanding",
month = jun,
year = "2021",
address = "Virtual",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nuse-1.3",
doi = "10.18653/v1/2021.nuse-1.3",
pages = "24--35",
abstract = "While many different aspects of human experiences have been studied by the NLP community, none has captured its full richness. We propose a new task to capture this richness based on an unlikely setting: movie characters. We sought to capture theme-level similarities between movie characters that were community-curated into 20,000 themes. By introducing a two-step approach that balances performance and efficiency, we managed to achieve 9-27{\%} improvement over recent paragraph-embedding based methods. Finally, we demonstrate how the thematic information learnt from movie characters can potentially be used to understand themes in the experience of people, as indicated on Reddit posts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2021-learning-similarity">
<titleInfo>
<title>Learning Similarity between Movie Characters and Its Potential Implications on Understanding Human Experiences</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhilin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weizhe</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodong</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Narrative Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nader</namePart>
<namePart type="family">Akoury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Faeze</namePart>
<namePart type="family">Brahman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Snigdha</namePart>
<namePart type="family">Chaturvedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Iyyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lara</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Martin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Virtual</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While many different aspects of human experiences have been studied by the NLP community, none has captured its full richness. We propose a new task to capture this richness based on an unlikely setting: movie characters. We sought to capture theme-level similarities between movie characters that were community-curated into 20,000 themes. By introducing a two-step approach that balances performance and efficiency, we managed to achieve 9-27% improvement over recent paragraph-embedding based methods. Finally, we demonstrate how the thematic information learnt from movie characters can potentially be used to understand themes in the experience of people, as indicated on Reddit posts.</abstract>
<identifier type="citekey">wang-etal-2021-learning-similarity</identifier>
<identifier type="doi">10.18653/v1/2021.nuse-1.3</identifier>
<location>
<url>https://aclanthology.org/2021.nuse-1.3</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>24</start>
<end>35</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Similarity between Movie Characters and Its Potential Implications on Understanding Human Experiences
%A Wang, Zhilin
%A Lin, Weizhe
%A Wu, Xiaodong
%Y Akoury, Nader
%Y Brahman, Faeze
%Y Chaturvedi, Snigdha
%Y Clark, Elizabeth
%Y Iyyer, Mohit
%Y Martin, Lara J.
%S Proceedings of the Third Workshop on Narrative Understanding
%D 2021
%8 June
%I Association for Computational Linguistics
%C Virtual
%F wang-etal-2021-learning-similarity
%X While many different aspects of human experiences have been studied by the NLP community, none has captured its full richness. We propose a new task to capture this richness based on an unlikely setting: movie characters. We sought to capture theme-level similarities between movie characters that were community-curated into 20,000 themes. By introducing a two-step approach that balances performance and efficiency, we managed to achieve 9-27% improvement over recent paragraph-embedding based methods. Finally, we demonstrate how the thematic information learnt from movie characters can potentially be used to understand themes in the experience of people, as indicated on Reddit posts.
%R 10.18653/v1/2021.nuse-1.3
%U https://aclanthology.org/2021.nuse-1.3
%U https://doi.org/10.18653/v1/2021.nuse-1.3
%P 24-35
Markdown (Informal)
[Learning Similarity between Movie Characters and Its Potential Implications on Understanding Human Experiences](https://aclanthology.org/2021.nuse-1.3) (Wang et al., NUSE-WNU 2021)
ACL