
Proceedings of Recent Advances in Natural Language Processing, pages 1031–1039
Sep 1–3, 2021.

https://doi.org/10.26615/978-954-452-072-4_116

1031

Improving Distantly Supervised Relation Extraction
with Self-Ensemble Noise Filtering

Tapas Nayak
IIT Kharagpur

India

Navonil Majumder
SUTD

Singapore
{tnk02.05,n.majumder.2009,soujanya.poria}@gmail.com

Soujanya Poria
SUTD

Singapore

Abstract

Distantly supervised models are very popular
for relation extraction since we can obtain a
large amount of training data using the distant
supervision method without human annotation.
In distant supervision, a sentence is considered
as a source of a tuple if the sentence contains
both entities of the tuple. However, this con-
dition is too permissive and does not guaran-
tee the presence of relevant relation-specific
information in the sentence. As such, dis-
tantly supervised training data contains much
noise which adversely affects the performance
of the models. In this paper, we propose a self-
ensemble filtering mechanism to filter out the
noisy samples during the training process. We
evaluate our proposed framework on the New
York Times dataset which is obtained via dis-
tant supervision. Our experiments with mul-
tiple state-of-the-art neural relation extraction
models show that our proposed filtering mech-
anism improves the robustness of the models
and increases their F1 scores.

1 Introduction

The task of relation extraction is about finding rela-
tion or no relation between two entities. This is an
important task to fill the gaps of existing knowledge
bases (KB). Open information extraction (OpenIE)
(Banko et al., 2007) is one way of extracting rela-
tions from text. They consider the verb in a sen-
tence as the relation and then find the noun phrases
located to the left and right of that verb as the en-
tities. But this process has two serious problems:
First, the same relation can appear in the text with
many verb forms and OpenIE treats them as dif-
ferent relations. This leads to the duplication of
relations in KB. Second, OpenIE treats any verbs
in a sentence as a relation which can generate a
large number of insignificant tuples which cannot
be added to a KB.

Supervised relation extraction models, on the
other hand, do not have these problems. But they
require a large amount of annotated data which is
difficult to get. Mintz et al. (2009), Riedel et al.
(2010), and Hoffmann et al. (2011) used the idea
of distant supervision to automatically obtain the
training data to overcome this problem. The idea
of distant supervision is that if a sentence contains
both the entities of a tuple, it is chosen as a source
sentence of this tuple. Although this process can
generate some noisy training instances, it can give
a significant amount of training data which can be
used to build supervised models for this task. They
map the tuples from existing KBs such as Freebase
(Bollacker et al., 2008) to the text corpus such as
Wikipedia articles (Mintz et al., 2009) or New York
Times articles (Riedel et al., 2010; Hoffmann et al.,
2011).

Based on distantly supervised training data, re-
searchers have proposed many state-of-the-art mod-
els for relation extraction. Mintz et al. (2009),
Riedel et al. (2010), and Hoffmann et al. (2011)
proposed feature-based learning models and used
entity tokens and their nearby tokens, their part-of-
speech tags, and other linguistic features to train
their models. Recently, many neural network-based
models have been proposed to avoid feature engi-
neering. Zeng et al. (2014) and Zeng et al. (2015)
used convolutional neural networks (CNN) with
max-pooling to find the relation between two given
entities. Shen and Huang (2016), Jat et al. (2017),
Nayak and Ng (2019) used attention framework in
their neural models for this task.

But the distantly supervised data may contain
many noisy samples. Sometimes sentences may
contain the two entities of a positive tuple, but they
may not contain the relation specific information.
These kinds of sentences and entity pairs are con-
sidered as positive noisy samples. Another set of
noisy samples comes from the way samples for

1032

Sentence Entity 1 Entity 2 DS Relation Actual
Relation Status

Barack Obama was born
in Hawaii . Barack Obama Hawaii birth place birth place Clean

Barack Obama visited
Hawaii . Barack Obama Hawaii birth place None Noisy

Suvendu Adhikari was
born at Karkuli in Purba
Medinipur in West Bengal .

Karkuli West Bengal None located in Noisy

Suvendu Adhikari, transport
minister of West Bengal,
visited Karkuli .

Karkuli West Bengal None None Clean

Table 1: Examples of distantly supervised (DS) clean and noisy samples.

None relation are created. If a sentence contains
two entities from the KB and there is no positive
relation between these two entities in the KB, this
sentence and entity pair is considered as a sample
for None relation. But knowledge bases are not
complete and many valid relations among the enti-
ties in the KBs are missing. So it may be possible
that the sentence contains information about some
positive relation between the two entities, but since
the relation is not present in the KB, this sentence
and entity pair is incorrectly considered as a sam-
ple for None relation. These kinds of sentences
and entity pairs are considered as negative noisy
samples.

We include examples of clean and noisy sam-
ples generated using distant supervision in Table
1. The KB contains many entities out of which
four entities are Barack Obama, Hawaii, Karkuli,
and West Bengal. Barack Obama and Hawaii have
a birth place relation between them. Karkuli and
West Bengal are not connected with any relations
in the KB. So we assume that there is no valid re-
lation between these two entities. The sentence in
the first sample contains the two entities Barack
Obama and Hawaii, and it also contains informa-
tion about Obama being born in Hawaii. So this
sentence is a correct source for the tuple (Barack
Obama, Hawaii, birth place). So this is a positive
clean sample. The sentence in the second sample
contains the two entities, but it does not contain
the information about Barack Obama being born
in Hawaii. So it is a positive noisy sample. In the
case of the third and fourth samples, according to
distant supervision, they are considered as samples
for None relation. But the sentence in the third
sample contains the information for the relation
located in between Karkuli and West Bengal. So
the third sample is a negative noisy sample. The
fourth sample is an example of a negative clean

sample.
The presence of the noisy samples in the dis-

tantly supervised data adversely affects the perfor-
mance of the models. Our goal is to remove the
noisy samples from the training process to make the
models more robust for this task. We propose a self-
ensemble based noisy samples filtering method for
this purpose. Our framework identifies the noisy
samples during the training and removes them from
training data in the following iterations. This frame-
work can be used with any supervised relation ex-
traction model. We run experiments with several
state-of-the-art neural models, namely Convolu-
tional Neural Network (CNN) (Zeng et al., 2014),
Piecewise Convolutional Neural Network (PCNN)
(Zeng et al., 2015), Entity Attention (EA) (Shen
and Huang, 2016), and Bi-GRU Word Attention
(BGWA) (Jat et al., 2017) with the distantly super-
vised New York Times dataset (Hoffmann et al.,
2011). Our framework improves the F1 score of
these models by 2.1%, 1.1%, 2.1%, and 2.3% re-
spectively1.

2 Task Description

Sentence-level relation extraction is defined as
follows: Given a sentence S and two entities
{E1, E2} marked in the sentence, find the rela-
tion r(E1, E2) between these two entities in S
from a pre-defined set of relations R ∪ {None}.
R is the set of positive relations and None indi-
cates that none of the relations in R holds be-
tween the two marked entities in the sentence. The
relation between the entities is argument order-
specific, i.e., r(E1, E2) and r(E2, E1) are not the
same. The input to the system is a sentence S
and two entities E1 and E2, and output is the rela-
tion r(E1, E2) ∈ R∪ {None}. Distant supervised

1The code and data for this work is available at
https://github.com/nayakt/SENF4DSRE.git

1033

datasets are used for training relation extraction
models. But the presence of noisy samples nega-
tively affects their performance. In this work, we
try to identify these noisy samples during training
and filter them out from the subsequent training
process to improve the performance of the models.

3 Self-Ensemble Filtering Framework

Figure 1 shows our proposed self-ensemble filter-
ing framework. This framework is inspired from
the work by Nguyen et al. (2020). We start with
clean and noisy samples and assume that all sam-
ples are clean. At the end of each iteration, we pre-
dict the labels of the entire training samples. Based
on the predicted label and the label assigned by dis-
tant supervision, we decide to filter out a sample in
the next iteration. After each iteration, we consider
the entire training samples for the filtering process.
The individual models at each iteration can be very
sensitive to wrong labels, so in our training pro-
cess, we maintain a self-ensemble version of the
models which is a moving average of the models of
previous iterations. We hypothesize that the predic-
tions of the ensemble model are more stable than
the individual models. So the predictions from the
ensemble model are used to identify the noisy sam-
ples. These noisy samples are removed from the
training samples of the next iteration. We consider
the entire distantly supervised training data for pre-
diction and filtering so that if a sample is filtered
out wrongly in an iteration, it can be included again
in the training data in the subsequent iteration.

3.1 Self-Ensemble Training
We use the student-teacher training mechanism pro-
posed by Tarvainen and Valpola (2017) for our self-
ensemble model learning. A student model can
be any supervised learning model such as a neural
network model. A teacher model is the clone of
student model with same parameters. The weights
of parameters of this teacher model is the expo-
nential moving average of the weights of parame-
ters of the student model. So this teacher model
is the self-ensemble version of the student model.
An additional consistency loss is used to maintain
the consistency of the predictions of the student
model and the teacher model. Following is the step-
by-step algorithm to train such an self-ensemble
model:

1. First, a student model M i
s is initialized. This

can be any supervised relation extraction

model such as CNN, PCNN, Entity Attention
(EA) or Bi-GRU Word Attention (BGWA)
model.

2. A teacher model M i
t is cloned from the stu-

dent model M i
s. We completely detach the

weights of the teacher model from the student
model.

3. A gradient descent based optimizer is selected
to update the parameters of the student model.

4. Loss is calculated based on the cross-entropy
loss of the student model for the classifica-
tion task and a consistency loss between the
student model and teacher model.

5. In each training iteration or epoch:

• In each step or mini-batch:
– Update the weights of the student

model M i
s using the selected opti-

mizer and the loss function.
– Update the weights of the teacher

model M i
t as an exponential moving

average of the student weights.
• Evaluate the performance of the teacher

model M i
t on a validation dataset. If we

decide to continue the training after eval-
uation, we use a filtering strategy at this
point to remove the noisy samples from
the training data. This clean training data
is used in the next iteration of the training
process.

6. Return the best teacher model M i
t . This

teacher model is the self-ensemble version
of the student model.

3.2 Loss Function & Updating the Student

We use the negative log-likelihood loss of the rela-
tion classification task from the student model (Lce
) and a mean-squared error based consistency loss
between the student and teacher model (Lmse) to
update the student model.

Lce = −
1

B

B∑
i=1

log(p(ri|si, e1i , e2i , θs))

Lmse =
1

B

B∑
i=1

C∑
j=1

(yi,js − y
i,j
t)2

L = Lce + Lmse

1034

Figure 1: Overview of the self-ensemble noisy samples filtering framework. It starts with the clean and noisy
samples generated by distant supervision. During training, a self-ensemble version of the model is maintained. At
the end of an iteration, this self-ensemble model is used to identify the noisy samples in the training data. These
noisy samples are filtered out from the next iteration of training.

For Lce, p(ri|si, e1i , e2i , θs) is the conditional prob-
ability of the true relation ri when the sentence si,
two entities e1i and e2i , and the model parameters
of the student θs are given. For Lmse, yi,js and yi,jt
are the softmax output of the j th relation class of
i th training sample in the batch from the student
model and the teacher model respectively. C is
number of relation class in the dataset and B is the
batch size. The parameters of the student model θs
are updated based on the combined loss L using an
gradient descent based optimizer. The consistency
loss (Lmse) makes sure that output softmax distri-
bution of the student model and teacher model are
close to each other, thus maintain the consistency
of the output from both models.

3.3 Updating the Teacher
We update the parameters of teacher model θt based
on the exponential moving average of the all previ-
ous optimization steps of the student model.

W(θlt) = αW(θl−1
t) + (1− α)W(θls)

where W(θlt) and W(θls) are the weights of the
parameters of the teacher model and student model
respectively after the l th global optimization step.
W(θl−1

t) is the weights of the teacher model pa-
rameters up to the l− 1 th global optimization step.
α is a weight factor to control the contribution of
the student model of the current step and the teacher
model up to the previous step. At the initial opti-
mization steps of the training, we keep the value of
α low as the self-ensemble model or teacher model
is not stable yet and the student model should con-
tribute more. As the training progress and the

self-ensemble model becomes stable, we slowly
increase the value of α so that we take the majority
contribution from the self-ensemble model itself.
We use the following Gaussian curve (He et al.,
2018) to ramp up the value of α from 0 to αmax

which is a hyper-parameter of the model.

T = E ∗ dL
B
e

p = 1− min(step idx, T)
T

α = e−5p2αmax

Here E is the epoch count to ramp up the α from
0 to αmax. E is a hyper-parameter of the model
and generally, this is lower than the total number
of epochs of the training process. L is the size of
distant supervised training data at the beginning of
training, B is the batch size, and step idx is the cur-
rent global optimization step count of the training.
T represents the number of global optimization
steps required for α to reach its maximum value
αmax.

3.4 Noise Filtering Strategy

After each iteration, we use a validation dataset to
determine to stop or to continue the training. If
we decide to continue the training, then we use
the self-ensemble model or the teacher model to
filter out noisy samples from the initial training
data. This clean training data is used in the next
training iteration. We use the self-ensemble model
to predict the relation on initial training data for

1035

Figure 2: Ramping up of α during training. We use
E=5, T=33,000, and αmax = 0.9 to generate this
curve for the demonstration of how α reaches from 0
to αmax.

the filtering process after each iteration. We use
the entire initial training data for prediction so that
if a training sample is filtered out wrongly in an
iteration as a noisy one, it can be used again in
subsequent training iterations if the subsequent self-
ensemble model predicts the sample as a clean one.

Generally, distantly supervised datasets contain a
largely high number of None samples than the valid
relation samples. For this reason, we choose a strict
filtering strategy for None samples and a lenient
filtering strategy for valid relation samples. We
consider a None sample as clean if teacher models
predict the None relation. Otherwise, this sample is
considered as noisy and filtered out from the train-
ing set of next iteration. For the valid relations, we
consider a sample as clean if the relation assigned
by distant supervision belongs to the top K predic-
tions of the teacher model. This clean training data
is used in the next training iteration.

4 Student Models

We have used the following state-of-the-art neural
relation extraction models as the student model in
our filtering framework. These models use three
types of embedding vectors: (1) word embedding
vector w ∈ Rdw (2) a positional embedding vector
u1 ∈ Rdu which represents the linear distance of
a word from the start token of entity 1 (3) another
positional embedding vector u2 ∈ Rdu which rep-
resents the linear distance of a word from the start
token of entity 2. The sentences are represented us-
ing a sequence of vectors {x1,x2,,xn} where
xt = wt‖u1

t ‖u2
t . ‖ represents the concatenation of

vectors and n is the sentence length. These token
vectors xt are given as input to all the following
models.

4.1 CNN (Zeng et al., 2014)

In this model, convolution operations with max-
pooling are applied on the token vectors sequence
{x1,x2,,xn} to obtain the sentence-level fea-
ture vector.

ci = fT (xi‖xi+1‖....‖xi+k−1)

cmax = max(c1, c2,, cn)

v = [c1max, c
2
max,, c

fk
max]

f is a convolutional filter vector of dimension
k(dw+2du) where k is the filter width. The index i
moves from 1 to n and produces a set of scalar val-
ues {c1, c2,, cn}. The max-pooling operation
chooses the maximum cmax from these values as a
feature. With fk number of filters, we get a feature
vector v ∈ Rfk . This feature vector v is passed
to feed-forward layer with softmax to classify the
relation.

4.2 PCNN (Zeng et al., 2015)

Piecewise Convolutional Neural Network (PCNN)
is a modified version of the CNN model described
above. Similar to the CNN model, convolutional
operations are applied to the input vector sequence.
But CNN and PCNN models differ on how the
max-pooling operation is performed on the con-
volutional outputs. Rather than applying a global
max-pooling operation on the entire sentence, three
max-pooling operations are applied on three seg-
ments/pieces of the sentence based on the loca-
tion of the two entities. This is why this model
is called the Piecewise Convolutional Neural Net-
work (PCNN). The first max-pooling operation is
applied from the beginning of the sequence to the
end of the entity appearing first in the sentence.
The second max-pooling operation is applied from
the beginning of the entity appearing first in the
sentence to the end of the entity appearing second
in the sentence. The third max-pooling operation is
applied from the beginning of the entity appearing
second in the sentence to the end of the sentence.
These max-pooled features are concatenated and
passed to a feed-forward layer with softmax to de-
termine the relation.

1036

4.3 Entity Attention (EA) (Shen and Huang,
2016)

This model combines the CNN model with an atten-
tion network. First, convolutional operations with
max-pooling are used to extract the global features
of the sentence. Next, attention is applied to the
words of the sentence based on the two entities sep-
arately. The word embedding of the last token of an
entity is concatenated with the embedding of every
word. This concatenated representation is passed
to a feed-forward layer with tanh activation and
then another feed-forward layer with softmax to
get a scalar attention score for every word for that
entity. The word embeddings are averaged based
on the attention scores to get the attentive feature
vectors. The CNN-extracted global feature vector
and two attentive feature vectors for the two enti-
ties are concatenated and passed to a feed-forward
layer with softmax to determine the relation.

4.4 Bi-GRU Word Attention (BGWA) (Jat
et al., 2017)

This model uses a bidirectional gated recurrent unit
(Bi-GRU) (Cho et al., 2014) to capture the long-
term dependency among the words in the sentence.
The tokens vectors xt are passed to a Bi-GRU layer.
The hidden vectors of the Bi-GRU layer are passed
to a bi-linear operator which is a combination of
two feed-forward layers with softmax to compute
a scalar attention score for each word. The hidden
vectors of the Bi-GRU layer are multiplied by their
corresponding attention scores for scaling up the
hidden vectors. A piecewise convolution neural
network (Zeng et al., 2015) is used on top of the
scaled hidden vectors to obtain the feature vector.
This feature vector is passed to a feed-forward layer
with softmax to determine the relation.

5 Experiments

5.1 Datasets

To verify our hypothesis, we need training data that
is created using distant supervision, thus noisy and
test data which is not noisy, thus human-annotated.
If the test data is also noisy, then it will be hard
to derive any conclusion from the results. So, we
choose the New York Times (NYT) corpus of Hoff-
mann et al. (2011) for our experiments. This dataset
has 24 valid relations and a None relation. The
statistics of the dataset is given in Table 2. The
training dataset is created by aligning Freebase

tuples to NYT articles, but the test dataset is manu-
ally annotated. We use 10% of the training data as
validation data and the remaining 90% for training.

Train Test
#valid relations 24 24
#valid relation instances 100,671 520
#None relation instances 235,172 930

Table 2: The statistics of the NYT dataset.

5.2 Evaluation Metrics

We use precision, recall, and F1 scores to evaluate
the performance of models on relation extraction
after removing the None labels. We use a confi-
dence threshold to decide if the relation of a test
instance belongs to the set of valid relations R or
None. If the network predicts None for a test in-
stance, then it is considered as None only. But
if the network predicts a relation from the set R
and the corresponding softmax score is below the
confidence threshold, then the final predicted label
is changed to None. This confidence threshold is
the one that achieves the highest F1 score on the
validation data.

5.3 Parameter Settings

We run word2vec (Mikolov et al., 2013) on the
NYT corpus to obtain the initial word embeddings
with a dimension of dw = 50 and update the em-
beddings during training. We set the dimension
positional embedding vector at du = 5. We use
fk = 230 convolutional filters of kernel size k = 3
for feature extraction whenever we apply the con-
volution operation. We use dropout in our network
with a dropout rate of 0.5, and in convolutional lay-
ers, we use the tanh activation function. We train
our models with a mini-batch size of 50 and op-
timize the network parameters using the Adagrad
optimizer (Duchi et al., 2011). We want to keep
the value of αmax high because when the training
progress, we want to increase the contribution of
the self-ensemble model compare to the student
model. So we set the value of αmax at 0.9. We
experiment with E = {5, 10} epochs to ramp up
the value of α from 0 to αmax. We also experiment
withK = {3, 5} for filtering the valid relation sam-
ples during the filtering process after each training
iteration. The performance of the self-ensemble
model does not vary much with these choices of
E or K. So we use E = 5 and K = 3 for final
experiments.

1037

Student SEF
Model Prec. Rec. F1 Prec. Rec. F1 ↑

CNN
0.451
±

0.015

0.607
±

0.033

0.518
±

0.021

0.452
±

0.011

0.669
±

0.016

0.539
±

0.005
2.1%

PCNN
0.431
±

0.013

0.673
±

0.007

0.526
±

0.010

0.432
±

0.009

0.708
±

0.016

0.537
±

0.011
1.1%

EA
0.437
±

0.012

0.653
±

0.016

0.523
±

0.008

0.444
±

0.008

0.702
±

0.014

0.544
±

0.009
2.1%

BGWA
0.414
±

0.006

0.680
±

0.021

0.515
±

0.010

0.430
±

0.005

0.720
±

0.014

0.538
±

0.007
2.3%

Table 3: Precision, Recall, and F1 score comparison of the student models on NYT dataset when trained with
self-ensemble filtering framework (SEF column) and when trained independently (Student column). We report the
average of five runs with standard deviation. ↑ column shows the absolute % improvement of F1 score over the
Student models.

5.4 Results

We include the results of our experiments in Ta-
ble 3. We run the CNN, PCNN, EA, and BGWA
models 5 times with different random seeds and
report the average with standard deviation in the
‘Student’ column in Table 3. The column ‘SEF’
(Self-Ensemble Filtering) is the average results of 5
runs of CNN, PCNN, EA, and BGWA models with
the self-ensemble filtering framework. We see that
our SEF framework achieves 2.1%, 1.1%, 2.1%,
and 2.3% higher F1 score for the CNN, PCNN,
EA, and BGWA models respectively compared to
the Student models. If we compare the precision
and recall score of the four models, we see that our
self-ensemble framework improves the recall score
more than the corresponding precision score in
each of these four models. These results show the
effectiveness of our self-ensemble filtering frame-
work in a distant supervised dataset.

5.5 Self-Ensemble without Filtering

We experiment with how the self-ensemble version
of the student models behave without filtering the
noisy samples after each iteration. So in this set-
ting, we use the entire distant supervised training
data at every iteration. The results are included in
Table 4 under the ‘SE’ (Self-Ensemble) column.
This result shows that the performance of the four
neural models under self-ensemble training without
filtering is not much different from the ‘Student’
performance of Table 3. This shows that the filter-
ing of the noisy samples from the training dataset
helps to improve the performance of our proposed
self-ensemble framework.

SE
Model Prec. Rec. F1 ↓

CNN
0.448
±

0.012

0.610
±

0.029

0.516
±

0.015
2.3%

PCNN
0.432
±

0.005

0.670
±

0.012

0.525
±

0.005
1.2%

EA
0.421
±

0.014

0.647
±

0.017

0.510
±

0.011
3.4%

BGWA
0.424
±

0.021

0.689
±

0.020

0.524
±

0.010
1.4%

Table 4: Precision, Recall, and F1 score of the self-
ensemble version of the student models on NYT dataset
without noise filtering. We report the average of five
runs with standard deviation. ↓ column shows the ab-
solute % decline of F1 score respect to the SEF models
(Table 3).

5.6 Ensemble vs Self-Ensemble Filtering

Since our SEF framework has an ensemble com-
ponent, we compare its performance with the en-
semble versions of the independent student models.
The ‘Ensemble’ column in Table 5 refers to the en-
semble results of the 5 runs of each student model.
We use the five runs of the models on the test data
and average the softmax output of these runs to de-
cide the relation. We see that our SEF framework
outperforms the ensemble results for CNN, PCNN,
EA, and BGWA with 1.6%, 0.5%, 0.7% and 2.6%
F1 score respectively. Here, we should consider the
fact that to build an ensemble model, the student
models must be run multiple times (5 times in our
case). In contrast, self-ensemble models can be
built in a single run with little cost of maintaining
the moving average of the student model.

1038

Ensemble
Model Prec. Rec. F1 ↓
CNN 0.456 0.613 0.523 1.6%
PCNN 0.437 0.679 0.532 0.5%
EA 0.454 0.658 0.537 0.7%
BGWA 0.410 0.679 0.512 2.6%

Table 5: Precision, Recall, and F1 score of the ensem-
ble version of the student models on NYT dataset. ↓
column shows the absolute % decline of F1 score re-
spect to the SEF models (Table 3).

6 Related Work

There are two approaches for relation extraction
(Nayak et al., 2021): (i) Pipeline approaches (Zeng
et al., 2014, 2015; Jat et al., 2017; Nayak and Ng,
2019) (ii) Joint extraction approaches (Takanobu
et al., 2019; Nayak and Ng, 2020). Most of
these models work with distantly supervised noisy
datasets. Thus noise mitigation is an important di-
mension in this area of research. Multi-instance
relation extraction is one of the popular methods
for noise mitigation. Riedel et al. (2010), Hoff-
mann et al. (2011), Surdeanu et al. (2012), Lin et al.
(2016), Yaghoobzadeh et al. (2017), Vashishth et al.
(2018), Wu et al. (2019), and Ye and Ling (2019)
used this multi-instance learning concept in their
proposed relation extraction models. For each en-
tity pair, they used all the sentences that contain
these two entities to find the relation between them.
Their goal was to reduce the effect of noisy samples
using this multi-instance setting. They used differ-
ent types of sentence selection mechanisms to give
importance to the sentences that contain relation
specific keywords and ignore the noisy sentences.
But this idea may not be effective if there is only
one sentence for an entity pair. Ren et al. (2017)
and Yaghoobzadeh et al. (2017) used the multi-task
learning approach for mitigating the influence of
the noisy samples. They used fine-grained entity
typing as an additional task in their model.

Wu et al. (2017) used an adversarial training ap-
proach for the same purpose. They add noise to the
word embeddings to make the model more robust
for distantly supervised training. Qin et al. (2018a)
used the generative adversarial network (GAN) to
address this issue of the noisy samples in relation
extraction. They used a separate binary classifier
as a generator in their model for each positive re-
lation class to identify the true positives for that
relation and filter out the noisy ones. Qin et al.
(2018b) used reinforcement learning to identify the
noisy samples for the positive relation classes. He

et al. (2020) used reinforcement learning to iden-
tify the noisy samples for the positive relations and
then use the identified noisy samples as unlabelled
data in their model. Shang et al. (2020) used a
clustering approach to identify the noisy samples.
They assign the correct relation label to these noisy
samples and use them as additional training data
in their model. Different from these approaches,
we propose a student-teacher framework that can
work with any supervised neural network models
to address the issue of noisy samples in distantly-
supervised datasets.

7 Conclusion

In this work, we propose a self-ensemble based
noisy samples filtering framework for distantly su-
pervised relation extraction. Our framework identi-
fies the noisy samples during training and removes
them from the training data in the following it-
erations. This framework can be used with any
supervised relation extraction models. We run ex-
periments using several state-of-the-art neural mod-
els with this proposed filtering framework on the
distantly supervised New York Times dataset. The
results show that our proposed framework improves
the robustness of these models and increases their
F1 score on the relation extraction task.

Acknowledgments

This research is supported by A*STAR under
its RIE 2020 Advanced Manufacturing and Engi-
neering (AME) programmatic grant RGAST2003,
(award # A19E2b0098, project K-EMERGE:
Knowledge Extraction, Modelling, and Explain-
able Reasoning for General Expertise).

References
Michele Banko, Michael J Cafarella, Stephen Soder-

land, Matthew Broadhead, and Oren Etzioni. 2007.
Open information extraction from the web. In IJ-
CAI.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. In ACM SIGMOD ICMD.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. In Proceedings of Eighth Workshop on
Syntax, Semantics and Structure in Statistical Trans-
lation.

1039

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. JMLR.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2018. Adaptive semi-supervised learn-
ing for cross-domain sentiment classification. In
EMNLP.

Zhengqiu He, Wenliang Chen, Yuyi Wang, Wei Zhang,
Guanchun Wang, and Min Zhang. 2020. Improv-
ing neural relation extraction with positive and un-
labeled learning. In AAAI.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In ACL.

Sharmistha Jat, Siddhesh Khandelwal, and Partha
Talukdar. 2017. Improving distantly supervised rela-
tion extraction using word and entity based attention.
In Proceedings of the 6th Workshop on Automated
Knowledge Base Construction.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In ACL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In ICLR.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In ACL and IJCNLP.

Tapas Nayak, Navonil Majumder, Pawan Goyal, and
Soujanya Poria. 2021. Deep neural approaches to
relation triplets extraction: A comprehensive survey.
Cognitive Computing.

Tapas Nayak and Hwee Tou Ng. 2019. Effective at-
tention modeling for neural relation extraction. In
CoNLL.

Tapas Nayak and Hwee Tou Ng. 2020. Effective mod-
eling of encoder-decoder architecture for joint entity
and relation extraction. In AAAI.

Duc Tam Nguyen, Chaithanya Kumar Mummadi, Thi
Phuong Nhung Ngo, Thi Hoai Phuong Nguyen,
Laura Beggel, and Thomas Brox. 2020. SELF:
Learning to filter noisy labels with self-ensembling.
In ICLR.

Pengda Qin, Weiran Xu, and William Yang Wang.
2018a. DSGAN: Generative adversarial training for
distant supervision relation extraction. In ACL.

Pengda Qin, Weiran Xu, and William Yang Wang.
2018b. Robust distant supervision relation extrac-
tion via deep reinforcement learning. In ACL.

Xiang Ren, Zeqiu Wu, Wenqi He, Meng Qu, Clare R.
Voss, Heng Ji, Tarek F. Abdelzaher, and Jiawei Han.
2017. CoType: Joint extraction of typed entities and
relations with knowledge bases. In WWW.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In ECML and KDD.

Yuming Shang, He-Yan Huang, Xian-Ling Mao, Xin
Sun, and Wei Wei. 2020. Are noisy sentences use-
less for distant supervised relation extraction? In
AAAI.

Yatian Shen and Xuanjing Huang. 2016. Attention-
based convolutional neural network for semantic re-
lation extraction. In COLING.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D. Manning. 2012. Multi-instance
multi-label learning for relation extraction. In
EMNLP and CoNLL.

Ryuichi Takanobu, Tianyang Zhang, Jiexi Liu, and
Minlie Huang. 2019. A hierarchical framework for
relation extraction with reinforcement learning. In
AAAI.

Antti Tarvainen and Harri Valpola. 2017. Mean teach-
ers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning
results. In NeurIPS.

Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga,
Chiranjib Bhattacharyya, and Partha Talukdar. 2018.
RESIDE: Improving distantly-supervised neural re-
lation extraction using side information. In EMNLP.

Shanchan Wu, Kai Fan, and Qiong Zhang. 2019. Im-
proving distantly supervised relation extraction with
neural noise converter and conditional optimal selec-
tor. In AAAI.

Yi Wu, David Bamman, and Stuart Russell. 2017. Ad-
versarial training for relation extraction. In EMNLP.

Yadollah Yaghoobzadeh, Heike Adel, and Hinrich
Schütze. 2017. Noise mitigation for neural entity
typing and relation extraction. In EACL.

Zhi-Xiu Ye and Zhen-Hua Ling. 2019. Distant supervi-
sion relation extraction with intra-bag and inter-bag
attentions. In NAACL.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction
via piecewise convolutional neural networks. In
EMNLP.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In COLING.

