@inproceedings{tan-jiang-2021-learning,
title = "Learning and Evaluating {C}hinese Idiom Embeddings",
author = "Tan, Minghuan and
Jiang, Jing",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)",
month = sep,
year = "2021",
address = "Held Online",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/2021.ranlp-1.155",
pages = "1387--1396",
abstract = "We study the task of learning and evaluating Chinese idiom embeddings. We first construct a new evaluation dataset that contains idiom synonyms and antonyms. Observing that existing Chinese word embedding methods may not be suitable for learning idiom embeddings, we further present a BERT-based method that directly learns embedding vectors for individual idioms. We empirically compare representative existing methods and our method. We find that our method substantially outperforms existing methods on the evaluation dataset we have constructed.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tan-jiang-2021-learning">
<titleInfo>
<title>Learning and Evaluating Chinese Idiom Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Minghuan</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Held Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study the task of learning and evaluating Chinese idiom embeddings. We first construct a new evaluation dataset that contains idiom synonyms and antonyms. Observing that existing Chinese word embedding methods may not be suitable for learning idiom embeddings, we further present a BERT-based method that directly learns embedding vectors for individual idioms. We empirically compare representative existing methods and our method. We find that our method substantially outperforms existing methods on the evaluation dataset we have constructed.</abstract>
<identifier type="citekey">tan-jiang-2021-learning</identifier>
<location>
<url>https://aclanthology.org/2021.ranlp-1.155</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>1387</start>
<end>1396</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning and Evaluating Chinese Idiom Embeddings
%A Tan, Minghuan
%A Jiang, Jing
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)
%D 2021
%8 September
%I INCOMA Ltd.
%C Held Online
%F tan-jiang-2021-learning
%X We study the task of learning and evaluating Chinese idiom embeddings. We first construct a new evaluation dataset that contains idiom synonyms and antonyms. Observing that existing Chinese word embedding methods may not be suitable for learning idiom embeddings, we further present a BERT-based method that directly learns embedding vectors for individual idioms. We empirically compare representative existing methods and our method. We find that our method substantially outperforms existing methods on the evaluation dataset we have constructed.
%U https://aclanthology.org/2021.ranlp-1.155
%P 1387-1396
Markdown (Informal)
[Learning and Evaluating Chinese Idiom Embeddings](https://aclanthology.org/2021.ranlp-1.155) (Tan & Jiang, RANLP 2021)
ACL