@inproceedings{wawer-2021-comboner,
title = "{C}ombo{NER}: A Lightweight All-In-One {POS} Tagger, Dependency Parser and {NER}",
author = "Wawer, Aleksander",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)",
month = sep,
year = "2021",
address = "Held Online",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/2021.ranlp-1.169",
pages = "1508--1514",
abstract = "The current natural language processing is strongly focused on raising accuracy. The progress comes at a cost of super-heavy models with hundreds of millions or even billions of parameters. However, simple syntactic tasks such as part-of-speech (POS) tagging, dependency parsing or named entity recognition (NER) do not require the largest models to achieve acceptable results. In line with this assumption we try to minimize the size of the model that jointly performs all three tasks. We introduce ComboNER: a lightweight tool, orders of magnitude smaller than state-of-the-art transformers. It is based on pre-trained subword embeddings and recurrent neural network architecture. ComboNER operates on Polish language data. The model has outputs for POS tagging, dependency parsing and NER. Our paper contains some insights from fine-tuning of the model and reports its overall results.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wawer-2021-comboner">
<titleInfo>
<title>ComboNER: A Lightweight All-In-One POS Tagger, Dependency Parser and NER</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aleksander</namePart>
<namePart type="family">Wawer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Held Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The current natural language processing is strongly focused on raising accuracy. The progress comes at a cost of super-heavy models with hundreds of millions or even billions of parameters. However, simple syntactic tasks such as part-of-speech (POS) tagging, dependency parsing or named entity recognition (NER) do not require the largest models to achieve acceptable results. In line with this assumption we try to minimize the size of the model that jointly performs all three tasks. We introduce ComboNER: a lightweight tool, orders of magnitude smaller than state-of-the-art transformers. It is based on pre-trained subword embeddings and recurrent neural network architecture. ComboNER operates on Polish language data. The model has outputs for POS tagging, dependency parsing and NER. Our paper contains some insights from fine-tuning of the model and reports its overall results.</abstract>
<identifier type="citekey">wawer-2021-comboner</identifier>
<location>
<url>https://aclanthology.org/2021.ranlp-1.169</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>1508</start>
<end>1514</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ComboNER: A Lightweight All-In-One POS Tagger, Dependency Parser and NER
%A Wawer, Aleksander
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)
%D 2021
%8 September
%I INCOMA Ltd.
%C Held Online
%F wawer-2021-comboner
%X The current natural language processing is strongly focused on raising accuracy. The progress comes at a cost of super-heavy models with hundreds of millions or even billions of parameters. However, simple syntactic tasks such as part-of-speech (POS) tagging, dependency parsing or named entity recognition (NER) do not require the largest models to achieve acceptable results. In line with this assumption we try to minimize the size of the model that jointly performs all three tasks. We introduce ComboNER: a lightweight tool, orders of magnitude smaller than state-of-the-art transformers. It is based on pre-trained subword embeddings and recurrent neural network architecture. ComboNER operates on Polish language data. The model has outputs for POS tagging, dependency parsing and NER. Our paper contains some insights from fine-tuning of the model and reports its overall results.
%U https://aclanthology.org/2021.ranlp-1.169
%P 1508-1514
Markdown (Informal)
[ComboNER: A Lightweight All-In-One POS Tagger, Dependency Parser and NER](https://aclanthology.org/2021.ranlp-1.169) (Wawer, RANLP 2021)
ACL