@inproceedings{yano-etal-2021-utterance,
title = "Utterance Position-Aware Dialogue Act Recognition",
author = "Yano, Yuki and
Tamura, Akihiro and
Ninomiya, Takashi and
Obayashi, Hiroaki",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)",
month = sep,
year = "2021",
address = "Held Online",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/2021.ranlp-1.176",
pages = "1567--1574",
abstract = "This study proposes an utterance position-aware approach for a neural network-based dialogue act recognition (DAR) model, which incorporates positional encoding for utterance{'}s absolute or relative position. The proposed approach is inspired by the observation that some dialogue acts have tendencies of occurrence positions. The evaluations on the Switchboard corpus show that the proposed positional encoding of utterances statistically significantly improves the performance of DAR.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yano-etal-2021-utterance">
<titleInfo>
<title>Utterance Position-Aware Dialogue Act Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuki</namePart>
<namePart type="family">Yano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akihiro</namePart>
<namePart type="family">Tamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takashi</namePart>
<namePart type="family">Ninomiya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroaki</namePart>
<namePart type="family">Obayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Held Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study proposes an utterance position-aware approach for a neural network-based dialogue act recognition (DAR) model, which incorporates positional encoding for utterance’s absolute or relative position. The proposed approach is inspired by the observation that some dialogue acts have tendencies of occurrence positions. The evaluations on the Switchboard corpus show that the proposed positional encoding of utterances statistically significantly improves the performance of DAR.</abstract>
<identifier type="citekey">yano-etal-2021-utterance</identifier>
<location>
<url>https://aclanthology.org/2021.ranlp-1.176</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>1567</start>
<end>1574</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Utterance Position-Aware Dialogue Act Recognition
%A Yano, Yuki
%A Tamura, Akihiro
%A Ninomiya, Takashi
%A Obayashi, Hiroaki
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)
%D 2021
%8 September
%I INCOMA Ltd.
%C Held Online
%F yano-etal-2021-utterance
%X This study proposes an utterance position-aware approach for a neural network-based dialogue act recognition (DAR) model, which incorporates positional encoding for utterance’s absolute or relative position. The proposed approach is inspired by the observation that some dialogue acts have tendencies of occurrence positions. The evaluations on the Switchboard corpus show that the proposed positional encoding of utterances statistically significantly improves the performance of DAR.
%U https://aclanthology.org/2021.ranlp-1.176
%P 1567-1574
Markdown (Informal)
[Utterance Position-Aware Dialogue Act Recognition](https://aclanthology.org/2021.ranlp-1.176) (Yano et al., RANLP 2021)
ACL
- Yuki Yano, Akihiro Tamura, Takashi Ninomiya, and Hiroaki Obayashi. 2021. Utterance Position-Aware Dialogue Act Recognition. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), pages 1567–1574, Held Online. INCOMA Ltd..