@inproceedings{hull-etal-2021-personality,
title = "Personality Trait Identification Using the {R}ussian Feature Extraction Toolkit",
author = "Hull, James R. and
Novak, Valerie and
Rytting, C. Anton and
Rodrigues, Paul and
Frank, Victor M. and
Swahn, Matthew",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)",
month = sep,
year = "2021",
address = "Held Online",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/2021.ranlp-1.66",
pages = "583--592",
abstract = "Feature engineering is an important step in classical NLP pipelines, but machine learning engineers may not be aware of the signals to look for when processing foreign language text. The Russian Feature Extraction Toolkit (RFET) is a collection of feature extraction libraries bundled for ease of use by engineers who do not speak Russian. RFET{'}s current feature set includes features applicable to social media genres of text and to computational social science tasks. We demonstrate the effectiveness of the tool by using it in a personality trait identification task. We compare the performance of Support Vector Machines (SVMs) trained with and without the features provided by RFET; we also compare it to a SVM with neural embedding features generated by Sentence-BERT.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hull-etal-2021-personality">
<titleInfo>
<title>Personality Trait Identification Using the Russian Feature Extraction Toolkit</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Hull</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valerie</namePart>
<namePart type="family">Novak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="given">Anton</namePart>
<namePart type="family">Rytting</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Rodrigues</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victor</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Frank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Swahn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Held Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Feature engineering is an important step in classical NLP pipelines, but machine learning engineers may not be aware of the signals to look for when processing foreign language text. The Russian Feature Extraction Toolkit (RFET) is a collection of feature extraction libraries bundled for ease of use by engineers who do not speak Russian. RFET’s current feature set includes features applicable to social media genres of text and to computational social science tasks. We demonstrate the effectiveness of the tool by using it in a personality trait identification task. We compare the performance of Support Vector Machines (SVMs) trained with and without the features provided by RFET; we also compare it to a SVM with neural embedding features generated by Sentence-BERT.</abstract>
<identifier type="citekey">hull-etal-2021-personality</identifier>
<location>
<url>https://aclanthology.org/2021.ranlp-1.66</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>583</start>
<end>592</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Personality Trait Identification Using the Russian Feature Extraction Toolkit
%A Hull, James R.
%A Novak, Valerie
%A Rytting, C. Anton
%A Rodrigues, Paul
%A Frank, Victor M.
%A Swahn, Matthew
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)
%D 2021
%8 September
%I INCOMA Ltd.
%C Held Online
%F hull-etal-2021-personality
%X Feature engineering is an important step in classical NLP pipelines, but machine learning engineers may not be aware of the signals to look for when processing foreign language text. The Russian Feature Extraction Toolkit (RFET) is a collection of feature extraction libraries bundled for ease of use by engineers who do not speak Russian. RFET’s current feature set includes features applicable to social media genres of text and to computational social science tasks. We demonstrate the effectiveness of the tool by using it in a personality trait identification task. We compare the performance of Support Vector Machines (SVMs) trained with and without the features provided by RFET; we also compare it to a SVM with neural embedding features generated by Sentence-BERT.
%U https://aclanthology.org/2021.ranlp-1.66
%P 583-592
Markdown (Informal)
[Personality Trait Identification Using the Russian Feature Extraction Toolkit](https://aclanthology.org/2021.ranlp-1.66) (Hull et al., RANLP 2021)
ACL