@inproceedings{inacio-pardo-2021-semantic,
title = "Semantic-Based Opinion Summarization",
author = "Lima In{\'a}cio, Marcio and
Pardo, Thiago",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)",
month = sep,
year = "2021",
address = "Held Online",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/2021.ranlp-1.70",
pages = "619--628",
abstract = "The amount of information available online can be overwhelming for users to digest, specially when dealing with other users{'} comments when making a decision about buying a product or service. In this context, opinion summarization systems are of great value, extracting important information from the texts and presenting them to the user in a more understandable manner. It is also known that the usage of semantic representations can benefit the quality of the generated summaries. This paper aims at developing opinion summarization methods based on Abstract Meaning Representation of texts in the Brazilian Portuguese language. Four different methods have been investigated, alongside some literature approaches. The results show that a Machine Learning-based method produced summaries of higher quality, outperforming other literature techniques on manually constructed semantic graphs. We also show that using parsed graphs over manually annotated ones harmed the output. Finally, an analysis of how important different types of information are for the summarization process suggests that using Sentiment Analysis features did not improve summary quality.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="inacio-pardo-2021-semantic">
<titleInfo>
<title>Semantic-Based Opinion Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marcio</namePart>
<namePart type="family">Lima Inácio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thiago</namePart>
<namePart type="family">Pardo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Held Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The amount of information available online can be overwhelming for users to digest, specially when dealing with other users’ comments when making a decision about buying a product or service. In this context, opinion summarization systems are of great value, extracting important information from the texts and presenting them to the user in a more understandable manner. It is also known that the usage of semantic representations can benefit the quality of the generated summaries. This paper aims at developing opinion summarization methods based on Abstract Meaning Representation of texts in the Brazilian Portuguese language. Four different methods have been investigated, alongside some literature approaches. The results show that a Machine Learning-based method produced summaries of higher quality, outperforming other literature techniques on manually constructed semantic graphs. We also show that using parsed graphs over manually annotated ones harmed the output. Finally, an analysis of how important different types of information are for the summarization process suggests that using Sentiment Analysis features did not improve summary quality.</abstract>
<identifier type="citekey">inacio-pardo-2021-semantic</identifier>
<location>
<url>https://aclanthology.org/2021.ranlp-1.70</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>619</start>
<end>628</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic-Based Opinion Summarization
%A Lima Inácio, Marcio
%A Pardo, Thiago
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)
%D 2021
%8 September
%I INCOMA Ltd.
%C Held Online
%F inacio-pardo-2021-semantic
%X The amount of information available online can be overwhelming for users to digest, specially when dealing with other users’ comments when making a decision about buying a product or service. In this context, opinion summarization systems are of great value, extracting important information from the texts and presenting them to the user in a more understandable manner. It is also known that the usage of semantic representations can benefit the quality of the generated summaries. This paper aims at developing opinion summarization methods based on Abstract Meaning Representation of texts in the Brazilian Portuguese language. Four different methods have been investigated, alongside some literature approaches. The results show that a Machine Learning-based method produced summaries of higher quality, outperforming other literature techniques on manually constructed semantic graphs. We also show that using parsed graphs over manually annotated ones harmed the output. Finally, an analysis of how important different types of information are for the summarization process suggests that using Sentiment Analysis features did not improve summary quality.
%U https://aclanthology.org/2021.ranlp-1.70
%P 619-628
Markdown (Informal)
[Semantic-Based Opinion Summarization](https://aclanthology.org/2021.ranlp-1.70) (Lima Inácio & Pardo, RANLP 2021)
ACL
- Marcio Lima Inácio and Thiago Pardo. 2021. Semantic-Based Opinion Summarization. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), pages 619–628, Held Online. INCOMA Ltd..