@inproceedings{sabri-etal-2021-emopars-collection,
title = "{E}mo{P}ars: A Collection of 30{K} Emotion-Annotated {P}ersian Social Media Texts",
author = "Sabri, Nazanin and
Akhavan, Reyhane and
Bahrak, Behnam",
editor = "Djabri, Souhila and
Gimadi, Dinara and
Mihaylova, Tsvetomila and
Nikolova-Koleva, Ivelina",
booktitle = "Proceedings of the Student Research Workshop Associated with RANLP 2021",
month = sep,
year = "2021",
address = "Online",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/2021.ranlp-srw.23",
pages = "167--173",
abstract = "The wide reach of social media platforms, such as Twitter, have enabled many users to share their thoughts, opinions and emotions on various topics online. The ability to detect these emotions automatically would allow social scientists, as well as, businesses to better understand responses from nations and costumers. In this study we introduce a dataset of 30,000 Persian Tweets labeled with Ekman{'}s six basic emotions (Anger, Fear, Happiness, Sadness, Hatred, and Wonder). This is the first publicly available emotion dataset in the Persian language. In this paper, we explain the data collection and labeling scheme used for the creation of this dataset. We also analyze the created dataset, showing the different features and characteristics of the data. Among other things, we investigate co-occurrence of different emotions in the dataset, and the relationship between sentiment and emotion of textual instances. The dataset is publicly available at \url{https://github.com/nazaninsbr/Persian-Emotion-Detection}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sabri-etal-2021-emopars-collection">
<titleInfo>
<title>EmoPars: A Collection of 30K Emotion-Annotated Persian Social Media Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nazanin</namePart>
<namePart type="family">Sabri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reyhane</namePart>
<namePart type="family">Akhavan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Behnam</namePart>
<namePart type="family">Bahrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Student Research Workshop Associated with RANLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Souhila</namePart>
<namePart type="family">Djabri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dinara</namePart>
<namePart type="family">Gimadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsvetomila</namePart>
<namePart type="family">Mihaylova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivelina</namePart>
<namePart type="family">Nikolova-Koleva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The wide reach of social media platforms, such as Twitter, have enabled many users to share their thoughts, opinions and emotions on various topics online. The ability to detect these emotions automatically would allow social scientists, as well as, businesses to better understand responses from nations and costumers. In this study we introduce a dataset of 30,000 Persian Tweets labeled with Ekman’s six basic emotions (Anger, Fear, Happiness, Sadness, Hatred, and Wonder). This is the first publicly available emotion dataset in the Persian language. In this paper, we explain the data collection and labeling scheme used for the creation of this dataset. We also analyze the created dataset, showing the different features and characteristics of the data. Among other things, we investigate co-occurrence of different emotions in the dataset, and the relationship between sentiment and emotion of textual instances. The dataset is publicly available at https://github.com/nazaninsbr/Persian-Emotion-Detection.</abstract>
<identifier type="citekey">sabri-etal-2021-emopars-collection</identifier>
<location>
<url>https://aclanthology.org/2021.ranlp-srw.23</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>167</start>
<end>173</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmoPars: A Collection of 30K Emotion-Annotated Persian Social Media Texts
%A Sabri, Nazanin
%A Akhavan, Reyhane
%A Bahrak, Behnam
%Y Djabri, Souhila
%Y Gimadi, Dinara
%Y Mihaylova, Tsvetomila
%Y Nikolova-Koleva, Ivelina
%S Proceedings of the Student Research Workshop Associated with RANLP 2021
%D 2021
%8 September
%I INCOMA Ltd.
%C Online
%F sabri-etal-2021-emopars-collection
%X The wide reach of social media platforms, such as Twitter, have enabled many users to share their thoughts, opinions and emotions on various topics online. The ability to detect these emotions automatically would allow social scientists, as well as, businesses to better understand responses from nations and costumers. In this study we introduce a dataset of 30,000 Persian Tweets labeled with Ekman’s six basic emotions (Anger, Fear, Happiness, Sadness, Hatred, and Wonder). This is the first publicly available emotion dataset in the Persian language. In this paper, we explain the data collection and labeling scheme used for the creation of this dataset. We also analyze the created dataset, showing the different features and characteristics of the data. Among other things, we investigate co-occurrence of different emotions in the dataset, and the relationship between sentiment and emotion of textual instances. The dataset is publicly available at https://github.com/nazaninsbr/Persian-Emotion-Detection.
%U https://aclanthology.org/2021.ranlp-srw.23
%P 167-173
Markdown (Informal)
[EmoPars: A Collection of 30K Emotion-Annotated Persian Social Media Texts](https://aclanthology.org/2021.ranlp-srw.23) (Sabri et al., RANLP 2021)
ACL