@inproceedings{vachev-etal-2021-generating-answer,
title = "Generating Answer Candidates for Quizzes and Answer-Aware Question Generators",
author = "Vachev, Kristiyan and
Hardalov, Momchil and
Karadzhov, Georgi and
Georgiev, Georgi and
Koychev, Ivan and
Nakov, Preslav",
editor = "Djabri, Souhila and
Gimadi, Dinara and
Mihaylova, Tsvetomila and
Nikolova-Koleva, Ivelina",
booktitle = "Proceedings of the Student Research Workshop Associated with RANLP 2021",
month = sep,
year = "2021",
address = "Online",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/2021.ranlp-srw.28",
pages = "203--209",
abstract = "In education, quiz questions have become an important tool for assessing the knowledge of students. Yet, manually preparing such questions is a tedious task, and thus automatic question generation has been proposed as a possible alternative. So far, the vast majority of research has focused on generating the question text, relying on question answering datasets with readily picked answers, and the problem of how to come up with answer candidates in the first place has been largely ignored. Here, we aim to bridge this gap. In particular, we propose a model that can generate a specified number of answer candidates for a given passage of text, which can then be used by instructors to write questions manually or can be passed as an input to automatic answer-aware question generators. Our experiments show that our proposed answer candidate generation model outperforms several baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vachev-etal-2021-generating-answer">
<titleInfo>
<title>Generating Answer Candidates for Quizzes and Answer-Aware Question Generators</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristiyan</namePart>
<namePart type="family">Vachev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Momchil</namePart>
<namePart type="family">Hardalov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgi</namePart>
<namePart type="family">Karadzhov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgi</namePart>
<namePart type="family">Georgiev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Koychev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Student Research Workshop Associated with RANLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Souhila</namePart>
<namePart type="family">Djabri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dinara</namePart>
<namePart type="family">Gimadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsvetomila</namePart>
<namePart type="family">Mihaylova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivelina</namePart>
<namePart type="family">Nikolova-Koleva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In education, quiz questions have become an important tool for assessing the knowledge of students. Yet, manually preparing such questions is a tedious task, and thus automatic question generation has been proposed as a possible alternative. So far, the vast majority of research has focused on generating the question text, relying on question answering datasets with readily picked answers, and the problem of how to come up with answer candidates in the first place has been largely ignored. Here, we aim to bridge this gap. In particular, we propose a model that can generate a specified number of answer candidates for a given passage of text, which can then be used by instructors to write questions manually or can be passed as an input to automatic answer-aware question generators. Our experiments show that our proposed answer candidate generation model outperforms several baselines.</abstract>
<identifier type="citekey">vachev-etal-2021-generating-answer</identifier>
<location>
<url>https://aclanthology.org/2021.ranlp-srw.28</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>203</start>
<end>209</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Answer Candidates for Quizzes and Answer-Aware Question Generators
%A Vachev, Kristiyan
%A Hardalov, Momchil
%A Karadzhov, Georgi
%A Georgiev, Georgi
%A Koychev, Ivan
%A Nakov, Preslav
%Y Djabri, Souhila
%Y Gimadi, Dinara
%Y Mihaylova, Tsvetomila
%Y Nikolova-Koleva, Ivelina
%S Proceedings of the Student Research Workshop Associated with RANLP 2021
%D 2021
%8 September
%I INCOMA Ltd.
%C Online
%F vachev-etal-2021-generating-answer
%X In education, quiz questions have become an important tool for assessing the knowledge of students. Yet, manually preparing such questions is a tedious task, and thus automatic question generation has been proposed as a possible alternative. So far, the vast majority of research has focused on generating the question text, relying on question answering datasets with readily picked answers, and the problem of how to come up with answer candidates in the first place has been largely ignored. Here, we aim to bridge this gap. In particular, we propose a model that can generate a specified number of answer candidates for a given passage of text, which can then be used by instructors to write questions manually or can be passed as an input to automatic answer-aware question generators. Our experiments show that our proposed answer candidate generation model outperforms several baselines.
%U https://aclanthology.org/2021.ranlp-srw.28
%P 203-209
Markdown (Informal)
[Generating Answer Candidates for Quizzes and Answer-Aware Question Generators](https://aclanthology.org/2021.ranlp-srw.28) (Vachev et al., RANLP 2021)
ACL