@inproceedings{del-bosque-trevino-etal-2021-communicative,
title = "Communicative Grounding of Analogical Explanations in Dialogue: A Corpus Study of Conversational Management Acts and Statistical Sequence Models for Tutoring through Analogy",
author = "Del-Bosque-Trevino, Jorge and
Hough, Julian and
Purver, Matthew",
editor = "Howes, Christine and
Dobnik, Simon and
Breitholtz, Ellen and
Chatzikyriakidis, Stergios",
booktitle = "Proceedings of the Reasoning and Interaction Conference (ReInAct 2021)",
month = oct,
year = "2021",
address = "Gothenburg, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.reinact-1.4/",
pages = "23--31",
abstract = "We present a conversational management act (CMA) annotation schema for one-to-one tutorial dialogue sessions where a tutor uses an analogy to teach a student a concept. CMAs are more fine-grained sub-utterance acts compared to traditional dialogue act mark-up. The schema achieves an inter-annotator agreement (IAA) Cohen Kappa score of at least 0.66 across all 10 classes. We annotate a corpus of analogical episodes with the schema and develop statistical sequence models from the corpus which predict tutor content related decisions, in terms of the selection of the analogical component (AC) and tutor conversational management act (TCMA) to deploy at the current utterance, given the student`s behaviour. CRF sequence classifiers perform well on AC selection and robustly on TCMA selection, achieving respective accuracies of 61.9{\%} and 56.3{\%} on a cross-validation experiment over the corpus."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="del-bosque-trevino-etal-2021-communicative">
<titleInfo>
<title>Communicative Grounding of Analogical Explanations in Dialogue: A Corpus Study of Conversational Management Acts and Statistical Sequence Models for Tutoring through Analogy</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jorge</namePart>
<namePart type="family">Del-Bosque-Trevino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Hough</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Reasoning and Interaction Conference (ReInAct 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Howes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Breitholtz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stergios</namePart>
<namePart type="family">Chatzikyriakidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gothenburg, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a conversational management act (CMA) annotation schema for one-to-one tutorial dialogue sessions where a tutor uses an analogy to teach a student a concept. CMAs are more fine-grained sub-utterance acts compared to traditional dialogue act mark-up. The schema achieves an inter-annotator agreement (IAA) Cohen Kappa score of at least 0.66 across all 10 classes. We annotate a corpus of analogical episodes with the schema and develop statistical sequence models from the corpus which predict tutor content related decisions, in terms of the selection of the analogical component (AC) and tutor conversational management act (TCMA) to deploy at the current utterance, given the student‘s behaviour. CRF sequence classifiers perform well on AC selection and robustly on TCMA selection, achieving respective accuracies of 61.9% and 56.3% on a cross-validation experiment over the corpus.</abstract>
<identifier type="citekey">del-bosque-trevino-etal-2021-communicative</identifier>
<location>
<url>https://aclanthology.org/2021.reinact-1.4/</url>
</location>
<part>
<date>2021-10</date>
<extent unit="page">
<start>23</start>
<end>31</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Communicative Grounding of Analogical Explanations in Dialogue: A Corpus Study of Conversational Management Acts and Statistical Sequence Models for Tutoring through Analogy
%A Del-Bosque-Trevino, Jorge
%A Hough, Julian
%A Purver, Matthew
%Y Howes, Christine
%Y Dobnik, Simon
%Y Breitholtz, Ellen
%Y Chatzikyriakidis, Stergios
%S Proceedings of the Reasoning and Interaction Conference (ReInAct 2021)
%D 2021
%8 October
%I Association for Computational Linguistics
%C Gothenburg, Sweden
%F del-bosque-trevino-etal-2021-communicative
%X We present a conversational management act (CMA) annotation schema for one-to-one tutorial dialogue sessions where a tutor uses an analogy to teach a student a concept. CMAs are more fine-grained sub-utterance acts compared to traditional dialogue act mark-up. The schema achieves an inter-annotator agreement (IAA) Cohen Kappa score of at least 0.66 across all 10 classes. We annotate a corpus of analogical episodes with the schema and develop statistical sequence models from the corpus which predict tutor content related decisions, in terms of the selection of the analogical component (AC) and tutor conversational management act (TCMA) to deploy at the current utterance, given the student‘s behaviour. CRF sequence classifiers perform well on AC selection and robustly on TCMA selection, achieving respective accuracies of 61.9% and 56.3% on a cross-validation experiment over the corpus.
%U https://aclanthology.org/2021.reinact-1.4/
%P 23-31
Markdown (Informal)
[Communicative Grounding of Analogical Explanations in Dialogue: A Corpus Study of Conversational Management Acts and Statistical Sequence Models for Tutoring through Analogy](https://aclanthology.org/2021.reinact-1.4/) (Del-Bosque-Trevino et al., ReInAct 2021)
ACL