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(a) (b) (c)

Figure 5: Experimental results for KL between classes on the three corpora: DBpedia (a), Yahoo (b) and Yelp (c).

Representation Sparsity. In NLP, learning
sparse representations has been explored for
various units of text with most of the focus placed
on sparse representation of words. As the earliest
work that moved in this direction, Murphy et al.
(2012) looked into sparse representations for ease
of analysis, performance, and being more cogni-
tively plausible. This idea was further developed
by many other researchers (Faruqui and Dyer,
2015; Yogatama et al., 2015; Faruqui et al., 2015;
Sun et al., 2016; Subramanian et al., 2018; Arora
et al., 2018; Li and Hao, 2019). Sparsification
of the large units of text (i.e., sentences) has not
received a lot of attention, perhaps due to inherent
complexity of sentence/phrase representations: i.e.,
encoding and analysing syntactic and semantic
information in a sentence embedding is rather a
non-trivial task. To the best of our knowledge, the
only model that sparsifies sentence emebeddings is
introduced by Trifonov et al. (2018). The authors
introduced a Seq2Seq model (Sutskever et al.,
2014) with the Sparsemax layer (Martins and
Astudillo, 2016) between the encoder and the
decoder which induces sparse latent codes of text.
This layer allows to learn codes that can be easier to
analyse compared to their dense counterparts, but it
is limited to modelling the categorical distribution.
Thus restricts a type a sentence representations that
can be learned.
VAE-based Representation Sparsity. VAE-
based sentence representation learning has shown
superior properties compared to their deterministic
counterparts on tasks such as text generation (Bow-
man et al., 2016), Semantic Textual Similarity (Li
et al., 2020a) and other wide range of language
tasks (Li et al., 2020b). While a handful of
VAE-based sparsification methods have been
proposed recently Mathieu et al. (2019) (MAT),
Tonolini et al. (2019) (TON), they have been only

evaluated on image domain. We summarise the
similarity and key differences with HSVAE model:
PRIOR AND POSTERIOR. All three frameworks

use the Spike-and-Slab distribution to con-
struct the prior on z. While the posterior
distribution in MAT remains as a Gaussian,
both TON and HSVAE opt for Spike-and-Slab.
However, TON controls the sparsity level in
an indirect way via “pseudo data” (Tomczak
and Welling, 2018) used in prior, whereas
HSVAE’s probabilistic treatment of 
 enables
direct control on the target sparsity level.

OBJECTIVE. HSVAE is trained with a principled
ELBO (eq. 3), while the other two add ad-
ditional regularisers to the ELBO of VAE
(eq. 1). For instance, MAT add a maxi-
mum mean discrepancy (MMD) divergence
between z’s aggregated posterior and prior
MMD(q�(z), p�(z)) and include scalar  and
� weights to the KL and MMD term, respec-
tively, see Appendix.

Model Sparsity. Concurrent to the widespread
use of large models such as Transformers (Vaswani
et al., 2017) in NLP, sparsification of these models
is also becoming popular (Zhang et al., 2020; Zhao
et al., 2019; Correia et al., 2019; Ye et al., 2019;
Child et al., 2019). The most common approach
to sparsify a Transformer is to reduce a number of
connection between the words/tokens in the self at-
tention kernel e.g. Correia et al. (2019). However,
these approaches still learn dense continuous repre-
sentations of token/word/sentence embeddings.
6 Conclusion

We provided an objective analysis of several unsu-
pervised sparsification frameworks based on VAEs,
both in terms of the impact on downstream tasks
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and the level of sparsity achieved. Also, we pre-
sented a novel VAE model - Hierarchical Sparse
Variational Autoencoder (HSVAE), outperforming
existing SOTA model (Mathieu et al., 2019). Ide-
ally, sparse representations should be capable of
encoding the underlying characteristics of a cor-
pus (e.g. class), in activation patterns as shown to
be the case for HSVAE. Moreover, using the text
classification corpora as a testbed, we established
how statistical properties of a corpus such as word
distribution in a class affect the ability of learned
sparse codes to represent task-related information.
Moving forward, HSVAE model along with the

analysis provided in this paper can serve as a good
basis for the design of sparse models that induce
continuous sparse vectors of text. For example,
a potential extension of HSVAE could be an in-
corporation of explicit linguistic biases into the
learned representations with the group sparsity
(Yogatama et al., 2015). Furthermore, as we dis-
cussed in Section 5, sparsity found its application
in the Transformers, but it, mainly, has been used
to reduce the number of connection between the
words/tokens. With the HSVAE framework one
can also learn sparse continuous representations of
token/word/sentence embeddings.
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A Derivations of ELBO

Starting from the DKL(q�(z, 
|x)||p�(z, 
|x)), we
derive the Evidence Lower Bound (ELBO) as fol-
lows:

DKL(q�(z, 
|x)||p�(z, 
|x)) =

∫
z,


dzd
 q�(z, 
|x) log
q�(z, 
|x)
p�(z, 
|x)

, (4)

after rearranging terms in equation 4 we can obtain:

log p�(x) − DKL(q�(z, 
|x)||p�(z, 
|x)) =

∫
z,


dzd
 q�(z, 
|x) log
p�(z, 
, x)
q�(z, 
|x)
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ELBO

, (5)

Based on the independence assumption that
we make in our graphical model (Figure 1) the
generative model factorises as: p�(z, 
, x) =
p�(x|z)p�(z|
)p�(
) and the inference model fac-
torises as: q�(z, 
|x) = q�(z|
, x)q�(
|x). There-
fore, we can rewrite the ELBO as follows:
∫
z,

dzd
 q�(z|
, x)q�(
|x) log

p�(x|z)p�(z|
)p�(
)
q�(z|
,x)q�(
|x)

,

(6)
We can further rewrite the ELBO as a sum of the
three separate terms. Where the first term is:
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The second term is:
∫
z,


dzd
 q�(z|x, 
)q�(
|x)[log q�(z|x, 
) − log p�(z|
)]

⟨

∫
z

dz q�(z|x, 
)[log q�(z|x, 
) − log p�(z|
)]
⟩

q�(
|x)
∴

⟨

DKL(q�(z|x, 
)||p�(z|
))
⟩

q�(
|x)
∴

(8)
Finally, the third term is:

∫
z,


dzd
 q�(z|x, 
)q�(
|x)[log q�(
|x) − log p�(
)]

∫



d
 q�(
|x)[log q�(
|x) − log p�(
)]∫
z

dz q�(z|x, 
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
sums to 1 for each∶


∴

∫



d
 q�(
|x)[log q�(
|x) − log p�(
)]∴

DKL(q�(
|x)||p�(
))∴ (9)
Collecting all the three terms into the single ELBO:

⟨

∫
z

dz q�(z|x, 
) log p�(x|z)
⟩

q�(
|x)
−

−
⟨

DKL(q�(z|x, 
)||p�(z|
))
⟩

q�(
|x)
−

−DKL(q�(
|x)||p�(
)),

(10)

B Objective Functions of Mathieu et al.
(2019) and Tonolini et al. (2019)
Models

The objective function of Mathieu et al. (2019) is:
⟨

log p�(x|z)
⟩

q�(z|x)
−  KL(q�(z|x)||p�(z))−

−�D(q�(z), p�(z)),

where  and � are the scalar weight on the terms
and Tonolini et al. (2019) is:
⟨

log p�(x|z)
⟩

q�(z|x)
−KL(q�(z|x)||q�(z|xu)−

−J × DKL
(


̄u||�)
)

,

where J is the dimensionality of the latent variable
z, xu is a learnable pseudo-input (Tomczak and
Welling, 2018) and � is prior sparsity.
C Deriving Marginal of (Univariate)

Spike-and-Slab Prior
We derive the Spike-and-Slab distribution by in-
tegrating out the index component which is dis-
tributed as a Bernoulli variable. This result is quite

well-known in machine learning, however for the
ease of the reader we present it here as a quick ref-
erence.
The derivation: assume 1) � ∼ p(�; 
) is a

Bernoulli(
) and 2) p(z|�) = (1 − �) × p1(z) +
� × p2(z), where p1(z) ∼  (z; 0, 1) and p2(z) ∼
 (z; 0, � → 0) is a Spike-and-Slab model. The
the marginal Spike-and-Slab prior over z can be
obtained in the following way:

p(z; 
) =
1
∑

i=0
p(z|� = i)p(� = i; 
)

p(z|� = 0)p(� = 0; 
) + p(z|� = 1)p(� = 1; 
)∴
[(1 − 0) × p1(z) + 0 × p2(z)]p(� = 0; 
)+
+ [(1 − 1) × p1(z) + 1 × p2(z)]p(� = 1; 
)∴

Expanding brackets:

p1(z)p(� = 0; 
) + p2(z)p(� = 1; 
)∴
 (z; 0, 1)p(� = 0; 
) + (z; 0, � → 0)p(� = 1; 
)∴
(1 − 
) (z; 0, 1) + 
 (z; 0, � → 0)∴

Therefore,

p(z; 
) = (1 − 
) (z; 0, 1) + 
 (z; 0, � → 0).

D End-to-end Differentiable

Sampling a value from the Spike-and-Slab posterior
distribution q(z|x, 
) is a two step process. First a
spike or slab component is sampled which is a bi-
nary decision, we use Binary Concrete distribution
(Maddison et al., 2016) to make this sampling step
end-to-end differentiable. Then the value is sam-
pled from the corresponding component, for this
we employ the reparameterization trick (Kingma
and Welling, 2014). Also, samples from the Beta
distribution are pathwise differentiable (Figurnov
et al., 2018).

E Hoyer

This section reports Average Hoyer, for the two cor-
pora Yelp andYahoo, both on themean and samples
from the posterior distributions of the HSVAE and
MAT-VAE models.
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E.1 MAT-VAE
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Figure 6: Average Hoyer (Av.Hoyer) on Yelp corpus
dev set for MAT-VAE. Lines are an average over the
3 runs of the models, the shaded area is the standard
deviation. The dimensionality of the latent variable of
the models is 32D.
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Figure 7: Average Hoyer (Av.Hoyer) on Yahoo corpus
dev set for MAT-VAE. Lines are an average over the
3 runs of the models, the shaded area is the standard
deviation.

E.2 HSVAE
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Figure 8: Average Hoyer (Av.Hoyer) on Yelp corpus
dev set for HSVAE. Lines are an average over the 3 runs
of the models, the shaded area is the standard deviation.
The dimensionality of the latent variable of the models
is 32D.
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Figure 9: Average Hoyer (Av.Hoyer) on Yahoo corpus
dev set for HSVAE. Lines are an average over the 3 runs
of the models, the shaded area is the standard deviation.
The dimensionality of the latent variable of the models
is 32D.
F Hardware

Please refer to Table 1 for the hardware that we use.
hardware specification
CPU Intel® Xeon E5-2670V3, 12-cores, 24-threads
GPU NVIDIA® TITAN RTXTM (24 GB) x 1
RAM CORSAIR® Vengeance LPX DDR4 2400 MHz (8 GB) x 4

Table 1: Computing infrastructure.

G Datasets

Yelp DBpedia Yahoo

# sent. (train corpus) 100K 140K 100K
# sent. (valid corpus) 10K 14K 10K
# sent. (test corpus) 10K 14K 10K
vocabulary size 19,997 20K 20K
min sent. length. 20 1 5
av. sent. length. 96 35 12
max. sent. length. 200 60 30
# classes 5 14 10
# sent. in each class (train/test corpus) 20K/2K 10K/1K 10K/1K

Table 2: Statistics of corpora. Vocabulary size excludes
the ⟨pad ⟩and ⟨EOS ⟩symbols.


