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Abstract 

We use Hypergraph Attention Networks 
(HyperGAT) to recognize multiple labels 
of Chinese humor texts. We firstly 
represent a joke as a hypergraph. The 
sequential hyperedge and semantic 
hyperedge structures are used to construct 
hyperedges. Then, attention mechanisms 
are adopted to aggregate context 
information embedded in nodes and 
hyperedges. Finally, we use trained 
HyperGAT to complete the multi-label 
classification task. Experimental results on 
the Chinese humor multi-label dataset 
showed that HyperGAT model outperforms 
previous sequence-based (CNN, BiLSTM, 
FastText) and graph-based (Graph-CNN, 
TextGCN, Text Level GNN) deep learning 
models.  

 
Keywords: hypergraph neural networks, humor 
recognition, multi-label classification.  
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4.4  
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GloVe (Pennington et al., 2014) 
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4.5  

HyperGAT
 FN (False Negative) 

Method Macro  
F1-score 

Micro  
F1-score 

Weighted  
F1-score 

Subset 
Accuracy 

CNN  (Yoon, 2014)  13.95 45.83 32.30 7.88 

BiLSTM (Liu et al., 2016) 12.42 46.29 33.28 8.50 

FastText (Joulin et al., 2016) 21.92 46.20 40.50 13.16 

Graph-CNN  (Defferrard et al., 2016) 21.27 40.64 39.54 8.44 

TextGCN (Yao et al., 2019) 21.27 38.78 37.33 9.45 

Text Level GNN  (Huang et al., 2019) 22.42 44.48 40.55 12.78 

Our used model (HyperGAT) 24.19 46.95 40.84 12.15 
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