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Abstract
This paper proposes a grammatical inference
algorithm to learn input-sensitive tier-based
strictly local languages across multiple tiers
from positive data only, when the locality of
the tier-constraints and the tier-projection func-
tion is set to 2 (MITSL2

2; De Santo and Graf,
2019). We conduct simulations showing that
the algorithm succeeds in learning MITSL2

2

patterns over a set of artificial languages.

1 Introduction

Formal language theory has long been used to study
the complexity of linguistic dependencies. Recent
research has posited that the phonotactics of natural
languages can be described by subclasses of the reg-
ular languages (subregular classes; McNaughton
and Papert, 1971; Heinz, 2011a,b). In particular,
tier-based strictly local (TSL) grammars — an ex-
tension of n-gram models — have been shown to be
able to capture a variety of non-local, unbounded
processes (Heinz et al., 2011; McMullin, 2016; Mc-
Mullin and Hansson, 2016). Recently however, it
has been suggested that the particular notion of
relativized locality employed by the TSL class is
unable to describe a variety of complex phonotac-
tic patterns cross-linguistically (McMullin, 2016;
Mayer and Major, 2018, a.o.). Thus, extensions
to TSL have been proposed in the search of the
right formal characterization for natural language
phonotactics. Specifically, input-sensitive TSL lan-
guages (ITSL; De Santo and Graf, 2019) consider
the local context of elements in the input string
(their immediate surrounding environment), in or-
der to simultaneously encode local and non-local
requirements on the wellformedness of strings in
the language.

Apart from typological coverage, an important as-
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pect of evaluating the linguistic relevance of these
analyses is to understand under which conditions
such patterns are efficiently learnable. In this sense,
learning approaches grounded in grammatical infer-
ences highlight how knowledge about the formal
properties of natural language phonotactics can
help restrict the learning space in useful ways; and
how they can inform different learning frameworks.
TSL languages are efficiently learnable from posi-
tive input only (Jardine and Heinz, 2016; Jardine
and McMullin, 2017). While ITSL languages have
been argued to share the same property, no learn-
ing algorithm exists for this class yet. In this paper,
we extend McMullin et al. (2019)’s inference al-
gorithm for multiple tier-based strictly 2 local lan-
guages (MTSL2), in order to learn patterns in the
intersection closure of ITSL2 — which consider
2-local contexts for segments in the input string
(MITSL2

2). The intersection closure of these lan-
guages is essential, if we strive to provide learning
approaches able to capture the whole phonotactics
of a language, and not one single pattern at the
time. We evaluate our algorithm qualitatively over
a variety of formal examples, and discuss known
limitations of the framework and possible exten-
sions.

2 MITSL Languages in Phonotactics

Many dependencies in phonology can be captured
by strictly local (SL) grammars: local constraints
that only make distinctions on the basis of contigu-
ous substrings of segments up to some length k
(essentially, k-grams; Heinz, 2011a). For example,
a (k=2) local dependency requiring /s/ to surface
as [z] when followed by [l] can be captured by a
grammar that forbids the sequence [sl]. However,
while prominent in natural language phonology,
(unbounded) long-distance dependencies cannot
be captured by local constraints. To account for
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this, work studying linguistic dependencies from a
formal language theoretical perspective has charac-
terized long-distance phonotactic patterns as tier-
based strictly local (TSL; Heinz et al., 2011).

Tier-based strictly local languages (TSL) are able to
encode a notion of relativized locality inspired by
the idea of phonological tier, already popular in au-
tosegmental phonology (Goldsmith, 1976). While
a formal introduction to the properties of TSL is
beyond the scope of this paper, a TSL dependency
is intuitively non-local in the input string but local
over a tier. A tier is defined as the projection of a
subset of the segments of the input string, and the
grammar constraints are characterized as the set of
sequences of length k not allowed on the tier. For
instance, the example in Figure 1 (from Aari, an
Omotic language of south Ethiopia) shows how to
enforce long-distance sibilant harmony in anterior-
ity. First we project from the string a tier T that
only contains sibilants, and then we ban contiguous
[ÿs] and [sÿ] on T (see Hayward, 1990).

∗ Z a: e r s e

∗
Z s

ok Z a: e r S e

ok
Z S

Figure 1: Example of sibilant harmony over tier from
Aari.

The class of TSL languages has been shown to
have good cross-linguistic coverage, accounting
for a variety of different phonotactic patterns cross-
linguistically (Heinz et al., 2011; McMullin, 2016;
Graf, 2017). Moreover, and most interesting to us,
TSLk languages have been shown to be efficiently
(polynomial in time and input) learnable in the limit
from positive data, even when the tier-alphabet
is not known a priori (Jardine and Heinz, 2016;
Jardine and McMullin, 2017).

However, there are two main known limits to TSL
as a good formal account for natural language
phonotactics. A first “issue” lies in the simplic-
ity of TSL’s projection mechanism. Recently, sev-
eral patterns have been reported that cannot be de-
scribed by the way TSL’s tier-projection masks out
parts of a string before enforcing some strictly lo-
cal constraint (McMullin, 2016; Mayer and Ma-
jor, 2018; Baek, 2017; Graf and Mayer, 2018;
De Santo and Graf, 2019). These patterns include
the long-distance sibilant harmony in Imdlawn

Tashlhiyt (McMullin, 2016), the nasal harmony pat-
tern in Yaka (Walker, 2000), the unbounded stress
of Classical Arabic (see Baek, 2017, and references
therein), and cases of unbounded tone plateauing.
The common trait shared by these phenomena is
that one has to inspect the local context (i.e., the
surrounding environment) of a segment before pro-
jecting it on a tier.

Consider the case of Consonantal Nasal harmony in
Yaka, in which a nasal stop induces nasalization of
voiced consonants occurring at any distance to its
right (Hyman, 1995; Walker, 2000). For instance,
the segmental alternation shown in Ex. (1) is due
to the phoneme /d/ surfacing as [n] after a preced-
ing nasal (cf. Ex. (1a), (1b), vs. (1c)). Vowels and
voiceless consonants intervening between the two
harmonizing stops remain unaffected (Ex. (2)).

(1) a. yán-ini ‘to cry out’
b. yád-idi ‘to spread’
c. ∗yán-idi

(2) a. hámúk-ini ‘to give away’
b. mí́ituk-ini ‘to sulk’

(3) a. b́íimb-idi ‘to embrace’
b. kúúnd-idi ‘to bury’
c. nááNg-ini ‘to last’

A TSL analysis for this pattern seems straightfor-
ward, as the data can be captured by projecting a
tier of voiced consonants, and enforcing constraints
banning tier adjacent [nd]. However, observe now
the examples in Ex. (3): consonantal complexes
composed of a nasal and a voiced oral stop neither
trigger (Ex. (3a), (3b)) nor block nasality agree-
ment (Ex. (3c)). Fig. 2 exemplifies why this inter-
action of a local and a non-local dependency is
not TSL. Since [nd] is sometimes observed in a
string-adjacent context (as in Ex. (3b)), it must be
permitted as a 2-gram on a tier — even though it
is only allowed when [n] and [d] are immediately
adjacent in the string. But then, a TSL grammar
would have no means of distinguishing Ex. (1c)
from Ex. (3b).

The reader might point out that the difference be-
tween Fig. 2.a and Fig. 2.c can be resolved by
extending the tier-grammar to consider 3-grams.
However, in order to enforce harmony correctly, the
tier-projection places every occurrence of voiced
stops in the string on the tier, thus making 3-grams
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(a)

∗ y á n i d i

n d
∗ (b)

ok y á n i n i

n n
ok

(c)

ok k ú ú n d i d i

n d d
∗ ok

Figure 2: Incorrect predictions of a TSL analysis of
nasal harmony in Yaka: (a) is ill-formed because of tier
adjacent ∗[nd]; (b) is well-formed since there are no
voiced stops on the tier disagreeing in nasality; (c) is
well-formed because the [d] immediately following [n]
in the input string stops the latter from being a trigger
for harmony, but it is still ruled out by the constraint
needed for (b).

constraints insufficient (e.g., Ex. (3c)). Moreover,
since the number of segments between harmoniz-
ing elements is potentially unbounded, no TSL
grammar can generally account for this pattern, in-
dependently of the dimension of the tier k-grams.

Let us consider the examples in Ex. (3) once more.
Any nasal immediately followed by a voiced stop
does not trigger harmony. In fact, since they do
not block the harmonic process, neither the nasal
nor the stop participate in the harmony at all. If we
could make the projection of nasals and stops avoid
those segments that appear in specific consonant
clusters (e.g., [nd]) the tier constraints discussed
above would work once again. This is not possible
with TSL as originally defined in (Heinz et al.,
2011), as TSL selects tier elements only based on
their 1-local properties (i.e., which kind of segment
they are). However, this kind of expressivity can
be accomplished by increasing the locality window
of the tier-projection mechanism.

This is accomplished by De Santo and Graf
(2019)’s ITSL class: a TSL grammar is made simul-
taneously aware of local and non-local properties of
segments in the string with a natural change to the
definition of the projection function. Fig. 3 shows
how, by increasing the locality of the projection to
2, we allow the grammar to project a nasal iff it
is not immediately followed by a voiced oral stop,
and a voiced stop iff it is not immediately preceded
by a nasal. Then, we can use 2-local tier constraints
to ban [nd]. This time, possible intermediate clus-
ters are not a problem, since the projection is able
to infer that they are in local contexts that make
them irrelevant to the harmonic process.

(a)

∗ y á n i d i

n d
∗ (b)

ok k ú ú n d i d i

d

ok

(c)

ok n á á N g i n i

n n
ok

Figure 3: Example of a ITSL analysis of nasal harmony
in Yaka: (a) is ill-formed because of adjacent ∗[nd]; (b)
is well-formed since only the last [d] is projected, while
the [nd] cluster is not; (c) is well-formed because the
[Ng] cluster does not enforce nasality on the following
stops. Note that [n,d,g,N] are projected on the tier only
when not in a nasal-stop cluster in the input.

ITSL languages have been shown to properly ex-
tend TSL, and fix a gap in its typological coverage.
However, there is a second shortcoming to adopt-
ing TSL as a model for natural language phono-
tactics: TSL (and ITSL) languages are not closed
under intersection (De Santo and Graf, 2019). Lack
of closure under intersection is problematic as it
entails that the complexity of phonological depen-
dencies is no longer constant under factorization.
This implies that the upper bound for phonological
phenomena shifts, depending on whether one treats
a constraint as a single phenomenon or the interac-
tion of multiple phenomena. Moreover, we clearly
want to be able to consider multiple phenomena at
the same time when describing the phonotactics of
a language. Consider the following additional data
from Yaka.

(4) a. kém-ene

b. kéb-ede

Ex. (4) shows a vowel alternation that is indepen-
dent of the nasality process, and is instead due to
vowel heigh harmony. Vowel harmony by itself
can be easily accounted for with a TSL grammar.
However, this account fails if we try to model nasal
harmony and vowel harmony in a single grammar
— since vowels projected on the tier would inter-
fere with the nasalization process. To account for
this, De Santo and Graf (2019) propose working
with the intersection closure of TSL (MTSL) and
ITSL languages (MITSL). Intuitively, MTSL and
MITSL can be conceptualized as encoding multiple
projections (tiers) at the same time, and enforcing
independent strictly local constraints over each tier.
For a string to belong to the language, it needs to

169



(a)

∗
k é m e d e

é e e
ok

ok

T: vowel harmony

m d
∗

T: nasal harmony

(b)

ok k é m e n e

é e e
ok

ok

T: vowel harmony

m n
ok

T: nasal harmony

Figure 4: Example of a MITSL analysis of Yaka nasal
and vowel harmony: (a) is ill-formed because there is a
violation on the nasal harmony tier; (b) is well-formed
since there are no violations on either tier.

be well-formed on every tier. For instance, Fig. 4
shows a grammar projecting a tier of vowels, with
constraints ensuring height harmony; and a tier
enforcing nasal harmony.

Since intersection closure is a desirable property
from a linguistic perspective, McMullin et al.
(2019) propose an algorithm that efficiently learns
multiple tier-based strictly 2-local (i.e., where tier
constraints are bigrams) dependencies, with no a-
priori knowledge about the tier-segments or the
number of tiers required. Given the typological im-
portance of input-sensitive projection, in this paper
we expand on McMullin et al. (2019) and present
a grammatical inference algorithm able to learn
MITSL grammars with 2-local contexts and 2-local
tier constraints (k-MITSL2

2), only from positive ex-
amples and without a priori knowledge about the
number — or the content — of necessary tiers.

3 MITSL2
2 Inference Algorithm

The remainder of the paper discusses our learning
algorithm for MITSL languages with projection
contexts and tier constraints of size 2 (MITSL2

2).
While the previous section presented an intuitive
definition of MITSL languages, a more formal
definition is necessary in order to understand the
way the algorithm works. Thus, we first intro-
duce some mathematical preliminaries and discuss
how the definition of MITSL grammar presented
in (De Santo and Graf, 2019) grounds the intu-
ition behind our generalization of McMullin et al.
(2019)’s learning algorithm. We also discuss a gen-
eralization of the notion of 2-path as introduced by
Jardine and Heinz (2016), and qualitative evaluate
the performance of the learner over a variety of
formal patterns.

3.1 Formal Preliminaries
We assume familiarity with set notation. Given a
finite alphabet Σ, Σ∗ is the set of all possible finite
strings of symbols drawn from Σ. A language L
is a subset of Σ∗. For every string w and every
non-empty string u, |w| denotes the length of the
string, and ε is the unique empty string. Left and
right word boundaries are marked by o,n /∈ Σ re-
spectively. Σo,n denotes the set of strings w ∈ Σ∗

that have been enriched with start and end symbols.

A string u is a k-factor of a string w iff
∃x, y ∈ Σ∗ such that w = xuy and |u| =
k. The function fack maps words to the set
of k-factors within them: fack(w) := {u :
u is a k-factor of w if |w| ≥ k, else u = w}. For
example, fac2(aab) = {aa, ab}. The domain of
fack is generalized to languages L ⊆ Σ∗ in the
usual way: fack(L) =

⋃
w∈L fack(w).

We allow standard Boolean connectives (∧, ∨, ¬,
→), and first-order quantification (∃, ∀) over indi-
viduals. We let x ≺ y denote precedence, x ≈ y
denote identity, and x, y denote variables ranging
over positions in a finite string w ∈ Σ∗.

As discussed, TSL languages have k-local con-
straints only apply to elements of a tier T ⊆ Σ.
A projection function (also called erasing function)
is thus introduced to delete (or mask) all symbols
that are not in T . In order to extend the notion of
tier in TSL languages to consider local properties
of the segments in the input string, De Santo and
Graf (2019) follow (Chandlee and Heinz, 2018)
and define an input-sensitive projection function in
terms of local contexts.

Definition 1 (Contexts). A k-context c over al-
phabet Σ is a tri-tuple 〈σ, u, v〉 such that σ ∈ Σ,
u, v ∈ Σ∗ and |u| + |v| ≤ k. A k-context set is a
finite set of k-contexts.

Definition 2 (ISL Projection). LetC be a k-context
set over Σ (where Σ is an arbitrary alphabet also
containing edge-markers). Then the input strictly k-
local (ISL-k) tier projection πC maps every s ∈ Σ∗

to π′C(ok−1, snk−1), where π′C(u, σv) is defined
as follows, given σ ∈ Σ ∪ {ε} and u, v ∈ Σ∗:

ε if σuv = ε,
σπ′C(uσ, v) if 〈σ, u, v〉 ∈ C,
π′C(uσ, v) otherwise.

Note that an ISL-1 tier projection only determines
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projection of σ based on σ itself, showing that this
projection function is really just an extension of
what happens for TSL languages. The definition of
ITSL languages then is as follows.

Definition 3 (ITSL). A language L is m-input lo-
cal k-TSL (ITSLm

k ) iff there exists an m-context set
C and a finite set R ⊆ Σk such that

L = {w ∈ Σ∗ : fack(ok−1πC(w)nk−1)∩R = ∅}.

A language is input-local TSL (ITSL) iff it is ITSLm
k

for some k,m ≥ 0. We call 〈C,R〉 an ITSL gram-
mar.

Note that the notion of tier is here expressed by
the set of contexts C, which is the set of tier seg-
ments with the locality conditions necessary for
them to be relevant to the tier constraints. Finally,
a n-MITSL language is defined as the intersection
of n ISTL languages. The MITSL class has been
shown to properly extend TSL, while remaining a
proper subclass of star-free languages (De Santo
and Graf, 2019).

In what follows we focus on learning MITSL2
2

languages with an arbitrary number of tiers, but
with the locality of the contexts and of the tier-
constraints fixed to 2. The intuition behind this
paper’s proposal is that, from a learning perspec-
tive, having to consider 2-local constraints (thus
a segment plus its left or right context) is equiva-
lent to treating bigrams as unitary elements of the
language, and explore dependencies over them.

To do so, the algorithm incorporates the notion of a
2-path (Jardine and Heinz, 2016), generalized over
bigrams. A 2-path is a 3-tuple 〈ρ1, X, ρ2〉, where
ρ1, ρ2 are elements in Σo,n and X is a subset of
Σ. The 2-paths of a string w = σ1σ2 . . . σn are
denoted paths2(w):

paths2 = {〈σi, X, σj〉 |i < j and
X = {σz|i < z < j}}

Intuitively, a 2-path can be thought of as a
precedence relation (ρ1 . . . ρ2) accompanied by
the set X of symbols that intervene between ρ1
and ρ2. Formally, each 2-path is therefore a 3-
tuple of the form 〈ρ1, X, ρ2〉. For example, the
string oabccn includes the following 2-paths:
〈a, {∅}, b〉, 〈a, {b}, c〉, 〈a, {b, c}, c〉, 〈b, {∅}, c〉,
〈b, {c}, c〉, 〈o, {∅}, a〉, 〈o, {a}, b〉, 〈o, {a, b}, c〉,
〈o, {a, b, c}, c〉, 〈o, {a, b, c},n〉, 〈a, {b, c},n〉,

〈b, {c},n〉, 〈c, {c},n〉, 〈c, {∅},n〉. We can ex-
tend paths2(·) from strings to languages as
paths2(L) =

⋃
w∈L paths2(w).

In order to have 2-paths capture the notion
of context, we have ρ1, ρ2 be elements in
fac2(Σ∗o,n) and X a subset of fac2(Σ) instead
of Σ proper. The definition of paths2(·) stays
as above, considering σi, σj , σz to be 2-factors
in w. As this is the only notion of paths rele-
vant for this paper, from now on we use paths,
2-paths, or paths2 interchangeably to refer this
extended notion of paths over 2-factors. Consider
once more the string oabccn, the set of 2-
paths is now the following: 〈oa, {ab}, bc〉,
〈oa, {ab, bc}, cc〉, 〈oa, {ab, bc, cc}, cn〉,
〈ab, {bc}, cc〉, 〈ab, {bc}, cn〉, 〈bc, {cc}, cn〉.

Note that Jardine and Heinz (2016) show that the
paths of a stringw can be calculated in time at most
quadratic in the size of w. This result is unaffected,
once we factor the cost of generating the set of
2-factors for Σ.

3.2 The Algorithm

This paper’s algorithm takes as input a set I of
strings over an alphabet Σ, and returns an n-
MITSL2

2 grammar G =
∧〈Ci, Ri〉— where each

Ci is a set of contexts in bigram formats, and each
Ri is a set of 2-local constraints over contexts, rep-
resented as 4-factors.

As mentioned, we adopt an approach rooted in
grammatical inference, following the identifica-
tion in the limit learning paradigm (Gold, 1967),
with polynomial bounds on time and data (De la
Higuera, 2010). Because of this, we make the fun-
damental assumption that the sample data in input
to the learning algorithm is a characteristic sample
for the targeted MITSL2

2 language — that is, it con-
tains all the information necessary to distinguish
a specific learning target (i.e., the phonological
MITSL2

2 phenomenon) from any other potential
targets present in the input. In other words, we
assume that the input is fully descriptive of the
target pattern. Recall once again that 2-factors (bi-
grams) are unitary symbols for the algorithm, and
thus 2-local tier constraints are in fact 4-grams.
The learner exploits the fact that if a 4-gram ρ1ρ2
is banned on some tier, then it will never appear
in string-adjacent contexts. Thus, it establishes a
canonical form for an MITSL2

2 grammar by asso-
ciating a tier to each individual constraint. It then
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Data: A finite input sample I ⊂ Σ∗

Result: MITSL2
2 grammar of the form

G =
∧〈Ci, Ri〉

Initialize F = fac4(Σ∗)− fac4(I);
Initialize B = fac2(Σ∗);
foreach f ∈ F do

Initialize Ri = f , Ci = B; (with
1 ≤ i ≤ |F |)

Initialize ρ1 = f [: 2]; ρ2 = f [2 :];
foreach σ ∈ B − {ρ1, ρ2} do

if ∀〈ρ1, X, ρ2〉 ∈ paths2(I) s.t. σ ∈
X, 〈ρ1, X − {σ}, ρ2〉 ∈ paths2(I)

then Ci = Ci − {σ} (i.e., remove σ
from Ci);

end
Gi = 〈Ci, Ri〉

end
Return G = G1 ∧G2 ∧ ... ∧G|F |
Algorithm 1: Pseudocode for the MITSL2

2 In-
ference Algorithm introduced in this paper.

explores the set of contexts relevant to each spe-
cific constraint, one tier at the time, starting from
the assumption that each tier projects the full set
of symbols in the input string. That is, we want
to explore which symbols can act as blockers for
a specific constraint. For each factor ρ1ρ2 absent
from the training data, the goal is therefore to deter-
mine which symbols can be safely removed from
the associated tier. Recall now the notion of 2-
paths, which denote precedence relations between
two symbols in the language, augmented with sets
of all intervening symbols. By examining the set
of 2-paths present in the training data, we can de-
termine which bigrams are freely distributed with
respect to the 4-gram ρ1ρ2 associated to the tier
we are currently constructing. Given a tier asso-
ciated to the constraint ρ1ρ2, only those elements
that are not freely distributed with respect to ρ1ρ2
will remain on the tier. Specifically, if all of the at-
tested 〈ρ1, X, ρ2〉 2-paths that include an interven-
ing σ ∈ fac2(Σ∗) are likewise attested without an
intervening σ, the algorithm removes σ from the
tier, since the presence of ρ1 . . . ρ2 is not dependent
on that intervening bigram. As the algorithm will
instantiate a tier for each unattested ρ1ρ2 in the
input sample — and with the assumption that the
input is a characteristic sample — this elimination
procedure guarantees that the algorithms will con-
verge to the full set of constraints and blockers for

the target language. The crucial difference from
McMullin et al. (2019)’s MTSL algorithm is that
here the input sample needs to be representative
of alternations between bigrams in the language,
instead of elements in Σ. Note however that this
complication is implicit within the definition of
ITSL constraints, since they tie the distribution of
segments in a language to their local and non-local
contexts simultaneously. Note that, because of this
“project everything and then remove” strategy, the
learner trivially also infers simple local constraints
in the input string, which are enforced on tiers
where every element of Σ is also an element of
the tier (i.e., a trivial tier). This is consistent with
the definition of MITSL, and it is actually optimal,
since it makes the algorithm truly able to capture
both local and long-distance dependencies in the
phonotactic of a language. The reader is also in-
vited to observe how the extension to the notion
of 2-paths doesn’t affect the formal guarantees in
(Jardine and Heinz, 2016) in any significant way.

Finally, a peculiarity of our specific implementation
is that the MITSL grammar returned is in a specific
“canonical form”. That is, by assigning each tier
to a single constraint, it also ties constraints that
could co-exist on the same tier to distinct tiers. Ad-
ditionally, as a consequence of treating bigrams
as unary symbols, when a segment is freely dis-
tributed with respect to its contexts — i.e., it gets
projected on a tier independently on the context —
the algorithm will still treat each bigram as a dis-
tinct element. For instance, consider Σ = {a, e, o}
and assume e a tier element independently of con-
text. What our algorithm will infer is that any bi-
gram containing e will be a tier element, so that
C = {oe, ae, ea, eo, oe, ee, en}. In practice, it is
trivially possible to add a unification step to the tier
and context selection, in order to have a represen-
tation closer to the grammar a human phonologist
would write. The following section discusses the
performance of the algorithm on an initial set of
test data. We also discuss how the way the algo-
rithm instantiates tiers affects the class of learnable
patterns.

4 Qualitative Evaluation

Consistently with previous work on subregular
learners, probability plays no role in the learning
approach we outlined. As an obvious consequence,
the algorithm’s generalizations are weak with re-
spect to noisy data, since exceptions to the target
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pattern are treated equally to any other strings in-
dependently of their frequency. Thus, in what fol-
lows we set up preliminary evaluation cases that
produce input samples devoid of exceptions. The
reader will rightfully object that this is rather unnat-
ural for a natural language phonotactic perspective.
However, it is worth noting that probabilistic ap-
proaches are not intrinsically incompatible with
the MITSL learner (nor with learners in this tradi-
tion in general). For the sake of this paper though,
the focus is on whether it is in principle possible
to learn MISTL2

2 languages efficiently, inferring
tiers and constraints from ideal data without a pri-
ori knowledge about their content. This factoriza-
tion approach to the learning problem is standard
in computational learning theory, as it disentan-
gles the problem of handling noisy input from that
of navigating the structure of the learning space
(Oncina and Garcı́a, 1991; Jardine, 2016; Jardine
and Heinz, 2016, a.o.). For similar reasons, note
that our measure of learnability is in terms of con-
sistency with the grammar generating the input.

4.1 Learnable Patterns1

We evaluate the MISTL2
2 learner on patterns repre-

sentative of four distinct language classes, inspect-
ing the ability of the learner to infer grammars fully
representative of the input language. Using artifi-
cial patterns instead of (even simplified) natural
language ones allows us to keep the target general-
ization transparent by relying on a small alphabet
set. Note that we generate input samples from ev-
ery language L we test via random generation of
strings from Σ∗ consistent with specified tier con-
straints. Thus, each sample is not guaranteed to
be a characteristic sample. In this first evaluation,
we set the cardinality of the input sample for each
language at 1000 — which simulations show being
sufficient for the learner to infer the correct pattern
for every language analyzed.

An Artificial ITSL2
2 Pattern Since MITSL is

a proper extension of ITSL, we first test the
learner on a language with a single input-sensitive
rule. Specifically, we generate an input sample
for an ITSL language L1 with Σ = {a, e, o, x}
such that o immediately before x prohibits e
to appear anywhere in the string. For instance,
eaaxaae, axaexeeexx, eaoxaao ∈ L1, while
oxaxe /∈ L1. The learner should infer that the cor-

1A Python implementation of the learning algorithm and
testing tools is available here.

rect grammar projects o on the tier banning ∗oe iff
o is immediately followed by x, and also projects
e in every context. This is exactly what the algo-
rithm learns, with the representational peculiarities
discussed above. In particular, since the projec-
tion of e is independent of context, instead of a
single tier the learner instantiates a tier for every
4-gram ∗oxeσ and ∗oxσe, where σ is every ele-
ment of Σ = {a, e, o, x}. For each such tiers, the
algorithm infers that ox is always projected, as is
the corresponding bigram containing e.

First-Last Harmony We then test a second
ITSL2

2 often discussed in the formal language lit-
erature on the complexity of phonotactics: an har-
monic dependency between the first and the last
element in the string. For instance, assuming that
the first and last symbols in a string are vow-
els, the requirement might be that they agree in
height. Specifically, we consider a language LFL

with Σ = {a, o, x}. Then, we generate data such
that ∗ o aon, ∗ o oan should be banned a tier.
For instance, axaxoaxa, oaaxaxoaxo ∈ LFL but
oxaxoaxa, aaxaxoaxo /∈ LFL. This pattern is
worth testing in addition to the one we used above,
as it requires both elements in the constraint to be
sensitive to their local context (the end and start
symbols, respectively). As expected, the learner
succeeds in generalizing from the input sample to
the full set of required constraints, instantiating a
distinct tier for each constraint combination.

An Artificial MTSL2
2 Pattern As the algorithm

is fully successful on ITSL patterns, we then test
it on the other relevant subclass of MITSL: an
MTSL2

2 language with constraints to be enforced
on multiple tiers, but with a TSL projection for
each tier which does not depend on context. Specif-
ically, we generate an artificial language L2 which
replicates the idea of a consonant harmony and a
vowel harmony process occurring within the same
language. We consider L2 with Σ = {a, o, p, b},
T1 = {a, o}, T2 = {p, b} and enforce constraints
such that R1 = {∗ao,∗ oa}, R2 = {∗bp,∗ pb}.
For instance, apapp, abbap, popooo ∈ L2 but
apabo, appoppp /∈ L2. As expected, the learner
successfully infers the full grammar. As the algo-
rithm still considers the patter an MITSL one, it
actually needs to consider every possible context
for each symbol, and it thus requires a more exten-
sive input set than McMullin et al. (2019)’s. For
example, in order to infer “project a”, the current
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algorithm actually learns to project {ao, oa, ap,
pa, ab, ba}. Importantly, this is exactly what is ex-
pected when learning an input-sensitive projection.

An Artificial MITSL2
2 Pattern Finally, we test

a proper MITSL2
2 pattern, which combines in-

stances of the dependencies observed above. In
particular, we generate a language that respects two
independent ITSL2

2 constraints. A first constraint
is the one we exploited in our artificial ITSL2

2 ex-
ample, such that o immediately before x prohibits
e to appear anywhere in the string. The second
constraint enforces that if b immediately precedes
y, then any following instance of d is forbidden.
This replicates a simplified pattern of dissimila-
tion. Thus, the whole alphabet for the language
is Σ = {a, e, o, x, b, p, d, y} with {o, e, x} being
relevant only to the first constraint, and {b, y, d}
only to the second. This corresponds to a lan-
guage L3 such that bdox, edyo, byoxpa ∈ L3 but
bydox, oxdye, byoxde /∈ L3. As expected given
the previous results, the learner is fully successful
on this language, correctly generalizing over the
distinct ITSL constraints independently.

4.2 Unlearnable Patterns

Our simulations show that our MTSL2
2 learner suc-

ceeds on a variety of complex patterns, given a pos-
itive sample representative of the target language.
However, since our approach relies directly on Mc-
Mullin et al. (2019)’s idea for instantiating multiple
tiers, it suffers from the same limitations. That is,
there is a portion of logically-possible M(I)TSL pat-
terns which cannot be captured using the current
learning strategy. To understand why, note again
that the algorithm instantiates a tier for each poten-
tial constraints. From this, it follows immediately
that each restriction can only be enforced on at most
one tier. Thus, the learner fails on those patterns
that have overlapping tier alphabets — i.e., tiers
that share some symbols, but that are not overall in
a set/subset relation. Specifically, the algorithm is
not able to consider overlapping tiers that are asso-
ciated with a single *ρ1ρ2 restriction (e.g., if such
constraint needs to be independently blocked by a
different symbol on each tier). It is important to
note that languages exhibiting patterns with these
problematic dependencies appear to be unattested,
and for reasons that have been speculated to be
directly related to ease of learnability, as excluding
overlapping tiers exponentially reduces a learner’s
hypothesis space (Aksënova and Deshmukh, 2018).

5 Discussion

This paper proposes a grammatical inference algo-
rithm to learn multiple input-sensitive tier-based
strictly local languages (MITSL; De Santo and
Graf, 2019) from positive data only, once the local-
ity of the tier-constraints and of the tier-projection
function is set to two (MITSL2

2). The algorithm
makes use of the characteristics of the language
class in order to guide its exploration of the learn-
ing space. We then discussed simulations demon-
strating the learner’s success over four artificial
languages belonging to subclasses of MITSL2

2 lan-
guages. Thus, this paper contributes to the growing
array of practical tools for the efficient learnability
of classes in the subregular hierarchy.

One usual critique of algorithms of this kind is the
unrealistic assumptions made about the nature of
the input sample. Importantly, while it is true that
these algorithms are only guaranteed to converge
to the correct grammar if the sample is a charac-
teristic, that doesn’t mean that they fail in other
cases. The condition on the input “simply” gives
us a converging guarantee. In this sense, our qual-
itative evaluation is meant as a first step toward a
more extensive study of the general learning per-
formance of these approaches, when varying the
coverage of the input sample — in the spirit of
what recently suggested in (Aksënova, 2020).

Similarly, an obvious issue when applying and test-
ing this algorithm to natural language data will
come from its inability to deal with exceptions and
noisy input in general. Obviously, exceptions in the
data could be handled by developing probabilistic
versions of the learner. Note that, while formal lan-
guages were discussed here as categorical in nature,
they admit stochastic counterparts. A stochastic ver-
sion of an MITSL algorithm could for instance take
into consideration the frequency of a specific path
before removing a symbol from the tier. It is also
reasonable to conceive of versions of this algorithm
taking natural phonotactic classes into account in
order to discriminate between potential hypotheses
about the a tier in presence of contradicting data.
Crucially though, the results in this paper show how
inferring tiers and input-sensitive tier constraints
can be achieved without a priori information about
them. The strategy formulated here could then be
combined with learning approaches that take ad-
vantage of different aspects of the nature of the
input data (Gouskova and Gallagher, 2020; Rasin
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et al., 2019).

Finally, the transparent way our algorithm explores
the learning space suggests that it could be used
as a baseline to evaluate the needs of more opaque
learning strategies with respect to different kinds of
input, in line with previous work combining gram-
matical inference techniques to blackbox learning
models (Avcu et al., 2017; Mahalunkar and Kelle-
her, 2018, a.o.).
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