@inproceedings{kaushik-etal-2021-cnlp,
title = "{CNLP}-{NITS} @ {L}ong{S}umm 2021: {T}ext{R}ank Variant for Generating Long Summaries",
author = "Kaushik, Darsh and
Khilji, Abdullah Faiz Ur Rahman and
Sinha, Utkarsh and
Pakray, Partha",
editor = "Beltagy, Iz and
Cohan, Arman and
Feigenblat, Guy and
Freitag, Dayne and
Ghosal, Tirthankar and
Hall, Keith and
Herrmannova, Drahomira and
Knoth, Petr and
Lo, Kyle and
Mayr, Philipp and
Patton, Robert M. and
Shmueli-Scheuer, Michal and
de Waard, Anita and
Wang, Kuansan and
Wang, Lucy Lu",
booktitle = "Proceedings of the Second Workshop on Scholarly Document Processing",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.sdp-1.13",
doi = "10.18653/v1/2021.sdp-1.13",
pages = "103--109",
abstract = "The huge influx of published papers in the field of machine learning makes the task of summarization of scholarly documents vital, not just to eliminate the redundancy but also to provide a complete and satisfying crux of the content. We participated in LongSumm 2021: The $2^{nd}$ Shared Task on Generating Long Summaries for scientific documents, where the task is to generate long summaries for scientific papers provided by the organizers. This paper discusses our extractive summarization approach to solve the task. We used TextRank algorithm with the BM25 score as a similarity function. Even after being a graph-based ranking algorithm that does not require any learning, TextRank produced pretty decent results with minimal compute power and time. We attained $3^{rd}$ rank according to ROUGE-1 scores (0.5131 for F-measure and 0.5271 for recall) and performed decently as shown by the ROUGE-2 scores.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kaushik-etal-2021-cnlp">
<titleInfo>
<title>CNLP-NITS @ LongSumm 2021: TextRank Variant for Generating Long Summaries</title>
</titleInfo>
<name type="personal">
<namePart type="given">Darsh</namePart>
<namePart type="family">Kaushik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abdullah</namePart>
<namePart type="given">Faiz</namePart>
<namePart type="given">Ur</namePart>
<namePart type="given">Rahman</namePart>
<namePart type="family">Khilji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Utkarsh</namePart>
<namePart type="family">Sinha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Partha</namePart>
<namePart type="family">Pakray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Scholarly Document Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iz</namePart>
<namePart type="family">Beltagy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arman</namePart>
<namePart type="family">Cohan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Feigenblat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dayne</namePart>
<namePart type="family">Freitag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tirthankar</namePart>
<namePart type="family">Ghosal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keith</namePart>
<namePart type="family">Hall</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Drahomira</namePart>
<namePart type="family">Herrmannova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Petr</namePart>
<namePart type="family">Knoth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyle</namePart>
<namePart type="family">Lo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Mayr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Patton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Shmueli-Scheuer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anita</namePart>
<namePart type="family">de Waard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuansan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucy</namePart>
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The huge influx of published papers in the field of machine learning makes the task of summarization of scholarly documents vital, not just to eliminate the redundancy but also to provide a complete and satisfying crux of the content. We participated in LongSumm 2021: The 2ⁿd Shared Task on Generating Long Summaries for scientific documents, where the task is to generate long summaries for scientific papers provided by the organizers. This paper discusses our extractive summarization approach to solve the task. We used TextRank algorithm with the BM25 score as a similarity function. Even after being a graph-based ranking algorithm that does not require any learning, TextRank produced pretty decent results with minimal compute power and time. We attained 3^rd rank according to ROUGE-1 scores (0.5131 for F-measure and 0.5271 for recall) and performed decently as shown by the ROUGE-2 scores.</abstract>
<identifier type="citekey">kaushik-etal-2021-cnlp</identifier>
<identifier type="doi">10.18653/v1/2021.sdp-1.13</identifier>
<location>
<url>https://aclanthology.org/2021.sdp-1.13</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>103</start>
<end>109</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CNLP-NITS @ LongSumm 2021: TextRank Variant for Generating Long Summaries
%A Kaushik, Darsh
%A Khilji, Abdullah Faiz Ur Rahman
%A Sinha, Utkarsh
%A Pakray, Partha
%Y Beltagy, Iz
%Y Cohan, Arman
%Y Feigenblat, Guy
%Y Freitag, Dayne
%Y Ghosal, Tirthankar
%Y Hall, Keith
%Y Herrmannova, Drahomira
%Y Knoth, Petr
%Y Lo, Kyle
%Y Mayr, Philipp
%Y Patton, Robert M.
%Y Shmueli-Scheuer, Michal
%Y de Waard, Anita
%Y Wang, Kuansan
%Y Wang, Lucy Lu
%S Proceedings of the Second Workshop on Scholarly Document Processing
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F kaushik-etal-2021-cnlp
%X The huge influx of published papers in the field of machine learning makes the task of summarization of scholarly documents vital, not just to eliminate the redundancy but also to provide a complete and satisfying crux of the content. We participated in LongSumm 2021: The 2ⁿd Shared Task on Generating Long Summaries for scientific documents, where the task is to generate long summaries for scientific papers provided by the organizers. This paper discusses our extractive summarization approach to solve the task. We used TextRank algorithm with the BM25 score as a similarity function. Even after being a graph-based ranking algorithm that does not require any learning, TextRank produced pretty decent results with minimal compute power and time. We attained 3^rd rank according to ROUGE-1 scores (0.5131 for F-measure and 0.5271 for recall) and performed decently as shown by the ROUGE-2 scores.
%R 10.18653/v1/2021.sdp-1.13
%U https://aclanthology.org/2021.sdp-1.13
%U https://doi.org/10.18653/v1/2021.sdp-1.13
%P 103-109
Markdown (Informal)
[CNLP-NITS @ LongSumm 2021: TextRank Variant for Generating Long Summaries](https://aclanthology.org/2021.sdp-1.13) (Kaushik et al., sdp 2021)
ACL