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Abstract

We present our entry into the 2021 3C Shared
Task Citation Context Classification based on
Purpose competition. The goal of the compe-
tition is to classify a citation in a scientific ar-
ticle based on its purpose. This task is impor-
tant because it could potentially lead to more
comprehensive ways of summarizing the pur-
pose and uses of scientific articles, but it is also
difficult, mainly due to the limited amount of
available training data in which the purposes
of each citation have been hand-labeled, along
with the subjectivity of these labels. Our entry
in the competition is a multi-task model that
combines multiple modules designed to han-
dle the problem from different perspectives,
including hand-generated linguistic features,
TF-IDF features, and an LSTM-with-attention
model. We also provide an ablation study and
feature analysis whose insights could lead to
future work.

1 Introduction

The influence of a scientific article has often been
measured by its citation count. Citation counts can
be highly impactful, influencing the overall ratings
of journals (e.g., their Impact Factor and Eigen-
factor) and are used to quantify the productivity
and influence of authors (e.g., h-index, i-index).
However, these methods all operate under the false
premise that all citations should be counted equally.
Treating all citations with equal weight ignores the
wide variety of functions that citations perform. Ci-
tations can provide information about the method-
ology used in the work, point to a contrasting per-
spective, provide motivation or background infor-
mation on a field, describe a previous work that
the present work extends, or suggest that future
work should consider a specific direction. Because
citations are so influential, there is a clear need
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for automated methods to judge both the role and
degree of importance of citations within articles.

The 3C Shared Task Citation Context Classifica-
tion based on Purpose competition, organized by
Scholarly Document Processing @ NAACL 2021,
aims to improve the state-of-the-art in automated
citation classification (Kunnath et al., 2021). Using
the full text of an article, the competition’s goal
is to identify the purpose of each citation. In this
paper, we describe our high-scoring entry into this
competition, achieving third place.

The paper is organized as follows. In Section 2,
we discuss related work. We describe the competi-
tion task and available data in Section 3. In Section
4, we present our approach and methodology. Sec-
tion 5 contains our results and an ablation study.
Finally, we close the paper with a discussion about
our findings in Section 6.

2 Related Work

Past work on automated citation classification can
be divided into two main categories: approaches
centered around hand-generated linguistic features
and approaches that utilize deep learning models.

Works that fall into the first category analyze
the citation context or the full text of the cited ar-
ticle in order to design strong linguistic features.
More specifically, Teufel et al. (Teufel et al., 2006)
focus on semantic-based features, identifying cue
words, phrases, verb tense, voice, and so on. Hou
et al. (Hou et al., 2011) introduce count-based
features, i.e., the number of times an article is
cited in various sections of the research paper.
Zhu et al. (Zhu et al., 2015) combines these ap-
proaches, presenting a list of 40 features split into
five classes: count-based, similarity-based, context-
based, position-based, and miscellaneous features.
Among those, count-based features were the most
significant. Similarly, Valenzuela et al. (Valen-
zuela et al., 2015) construct a set of twelve fea-
tures, most of which were also similar to features
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generated by (Zhu et al., 2015), and studied their
importance. Pride and Knuth (Pride and Knoth,
2017) provided their own analysis of features from
(Zhu et al., 2015) and (Valenzuela et al., 2015),
narrowing down to a list of three relatively pre-
dictive features (total number of citations, abstract
similarity, and author overlap) for classifying the
influence of a citation. While the above methods
detect the influence of a citation, Abu-Jbara et al.
(Abu-Jbara et al., 2013) explores vocabulary, num-
ber of citations in the sentence, and grammatical
construction to classify the purpose of a citation.
We draw upon each of these works in constructing
our own features for our hand-generated features
module.

More recent approaches for citation classifica-
tion use deep learning techniques from natural lan-
guage processing (Yang et al., 2016). These meth-
ods rely on word embeddings from pretrained lin-
guistic models such as BERT (Devlin et al., 2019),
ELMo (Peters et al., 2018), or GLoVe (Pennington
et al., 2014) to transform the citation context or
full-text data into vector representations. Jurgens et
al. feeds these embeddings into a random forest for
classification (Jurgens et al., 2018), but others have
used these vectors as input for neural network clas-
sifiers. For example, Structural Scaffolds (Cohan
et al., 2019) feeds the embedded representation of
the data into a bidirectional LSTM-with-attention.
We adopt a similar approach in our LSTM-with-
attention module.

3 Task Description

The 3C Shared Task Citation Context Classification
based on Purpose competition is a supervised mul-
ticlass classification challenge, where each citation
context must be categorized based on its purpose.
The categories (i.e., the possible labels) are: BACK-
GROUND, USES, COMPARES_CONTRASTS,
MOTIVATION, EXTENSION, and FUTURE. The
training dataset consists of 3000 labelled observa-
tions, each including the citing title, citing author,
cited title, and cited author, along with the sentence
in which the citation occurred. Labels, which were
constructed by humans, were provided for each
training example. The test dataset contains 1000
unlabelled samples, 500 of which were used for
public scoring, and the other 500 of which were
used for the final ranking.

4 Methodology

Our model was trained on three different tasks:
classifying purpose, section, and worthiness similar
to Cohan et al. (Cohan et al., 2019). The model
consists of three modules, as shown in Figure 1,
which will be discussed in this section.

4.1 Hand-Generated Features
We first developed frequency-based features. To
compute these, we partitioned the full text into
introduction, methods, results, and discussion sec-
tions. Then we computed counts of citations in
each of these sections and in the full article text,
leading to five features in total.

To compute a set of relative position features,
we located the sentence of the current citation and
computed its relative position with respect to the
number of sentences in the article. Since citations
can repeat in the full paper text, we also calculated
the relative position of the first appearance of the
citation in the text.

Additionally, we utilized the citation context and
titles of the citing and cited articles. Specifically,
for the COMPARES_CONTRASTS label, we man-
ually compiled a vocabulary set that is typically
used in the citing context (See Appendix A for our
list of key words). We then created a binary feature
of whether or not a citation context contained the
keywords from this vocabulary set. As our final fea-
ture, we computed the number of non-stop-words
in common between the citing paper and cited pa-
per title. Stop words were identified using Python
NLTK’s English stop word corpus (Bird and Loper,
2004).

4.2 TF-IDF
For the second module of the classifier, we gener-
ated term frequency-inverse document frequency
(TF-IDF) vectors for each citation context. A TF-
IDF score is a normalized count of the number of
times a word appears in a given citation context
relative to the remainder of the corpus. For a given
citation context, a TF-IDF score is calculated as:

TF-IDF(t, d) = tf(t, d) · idf(t), where

idf(t) = log

(
1 + n

1 + df(t)

)
+ 1,

where tf is the number of times a given term t
occurs in a document d, df(t) is the number of
documents which contain term t, and n is the to-
tal number of documents. To compute both term
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frequencies and inverse document frequencies, we
used the citation context and its preceding and sub-
sequent sentences in the full article text.

Figure 1: Model architecture with auxiliary tasks.

4.3 LSTM-with-Attention

Our third module is based on the Structural Scaf-
folds model of Cohan et al. (Cohan et al., 2019).
For a given sentence, we encoded each token as
a word vector. We generated the word vector by
concatenating both its word representation (gener-
ated using GloVe (Pennington et al., 2014)) and
contextualized embedding (generated using ELMo
(Peters et al., 2018)). Then, we passed the sequence
of word vectors to a bidirectional long short-term
memory network (Hochreiter and Schmidhuber,
1997) to generate the contextual information of
each token in the sentence. Finally, we fed the
hidden states of the network into an attention mech-
anism which generates a vector encoding the input
sentence.

4.4 Module Consolidation & Multi-Task
Learning

Following Cohan et al. (Cohan et al., 2019), we
used multi-task learning to improve the perfor-
mance of our model. In addition to citation-purpose
classification, we included two auxiliary tasks (sec-
tion and worthiness classification) that focus mostly
on the structure of the article. Since the data for
these tasks are relatively easier to obtain, it could
be possible to achieve better performance without
increasing the dataset size for citation-purpose clas-
sification. The first auxiliary task is to identify
citation worthiness. With a given sentence, the task

is to determine whether it includes a citation. The
second task is to predict the section title based on a
given citation sentence. For the auxiliary tasks, we
utilized the auxiliary dataset generated by Cohan et
al. (Cohan et al., 2019). The loss of our network is
a weighted sum of cross-entropy losses from each
individual task. We weighed the main task (pur-
pose classification) higher than the two auxiliary
tasks.

Our final model architecture combines all three
modules into one classifier (Figure 1). The model
takes the output from the LSTM attention module
and concatenates it with both hand-generated and
TF-IDF features before feeding it into the final
multi-layer perceptron for classification. For the
auxiliary tasks, only the sentence encoding from
the LSTM is utilized with no additional features.

Participant Public Private
IREL 0.27968 0.26973

nlp_player 0.31385 0.26440
Duke Data Science 0.25294 0.26325
Our Best Test Score 0.20825 0.28071
No Hand Generated 0.23846 0.22603

No LSTM + Attention 0.17521 0.15470
No TF-IDF 0.23413 0.21318

Table 1: Model Performances. Top three competitors
are shown first, then our best private score. Finally, an
ablation study on our best score is shown in the bottom
rows.

5 Results

Table 1 reports our performance on the citation
purpose classification task, along with scores for
the top two submissions, our best private score,
and results of an ablation study. Our third-place
model consists of solely the LSTM-with-attention
developed by (Cohan et al., 2019) using the com-
petition dataset padded by the supplemental ACL-
ARC dataset (Bird et al., 2008). This supplemental
dataset was provided by the competition organizers
to help competitors tune their models with greater
precision. However, our best-performing model
on the private dataset was a combination of hand-
generated features, TF-IDF embeddings, and an
LSTM-with-attention (this model was not selected
for the final leaderboard as it had lower perfor-
mance on the public dataset).



137

One vs. All ROC-AUC per class
Feature BKD. C/C EXT. FUT. MOT. USES

Num. Citations in Article 0.424 0.535 0.516 0.300 0.574 0.590
Vocabulary Set For COMPARES_CONTRASTS 0.489 0.579 0.501 0.495 0.486 0.465

Title Keyword Overlap 0.459 0.585 0.662 0.390 0.521 0.488
Num. Citations in Introduction 0.531 0.517 0.472 0.355 0.587 0.407

Num. Citations in Methods 0.437 0.438 0.487 0.403 0.468 0.707
Num. Citations in Results 0.447 0.534 0.588 0.433 0.523 0.531

Num. Citations in Discussion 0.502 0.546 0.466 0.682 0.472 0.461
Relative Position in Full Text 0.432 0.574 0.554 0.798 0.427 0.546

Relative Position of First Citation 0.459 0.553 0.520 0.752 0.434 0.529
TF-IDF MLP 0.542 0.518 0.435 0.294 0.520 0.651

Table 2: Feature Metrics. Features with AUC above .57 or below .43 are in bold. Bottom row reports TF-IDF fed
through a 2-layer MLP.

5.1 Ablation Study

In order to understand the impact of each compo-
nent of our best performing model, we conducted
an ablation study, where we removed one module
at a time to understand its individual impact on our
final model, and the results are shown in the final
three rows of Table 1. The LSTM-with-attention
has the greatest impact on our Macro-F1 score,
as when removed, performance drops the most
(δ = −0.126). Both TF-IDF embedding features
and hand-generated features impact performance
marginally, with δ = −0.068 and δ = −0.055
respectively. Thus, the deep learning component
of our model, which represented the sequential el-
ements of the citations, was the most important
as compared to the TF-IDF embedding, which fo-
cused on vocabulary frequency in citations, and the
hand-generated features, which looked at emergent
syntactic or citation frequency properties.

5.2 Feature Analysis

To facilitate future work on this dataset, we assem-
bled a list of the most successful features we gener-
ated by hand. Table 2 reports on these features and
for what classes they perform the best. After gener-
ating scalar values for each predictor, we generated
ROC curves in one-versus-all scenarios for each
class. If the area under the curve (AUC) is greater
than 0.57 or less than 0.43, we deem the feature
to be a strong positive or strong negative predic-
tor, respectively. These values are seen in bold
in the table. Because the objective of this com-
petition is to maximize F1 score, we prioritized
high-signal features for smaller classes such as
COMPARES_CONTRASTS, FUTURE, and MO-

TIVATION. For example, we created a specific vo-
cabulary set to filter COMPARES_CONTRASTS
citations. Most classes have 2-3 high-signal fea-
tures, but BACKGROUND only has 1 due to its
status as the largest class in the dataset. Features
that provided signals that were too weak to be use-
ful in this task included: Relative Position of Cita-
tion in References, Self-citation with First Author,
Self-citation with Coauthors, Structural Vocabu-
lary/Common Word Embeddings, and Number of
Verbs in Sentence. Self-citation is when the citing
author and cited author are the same. Note that this
goes against (Valenzuela et al., 2015) and (Pride
and Knoth, 2017), which found that self-citation
was a valuable classification feature for classifying
citation influence (recall that we focus on purpose
classification).

Although it is impossible to generate an ROC
curve based on raw TF-IDF values (because they
create a matrix rather than a vector), we fed the
vectors into a simple 2-layer multi-layer perceptron
and reported the classifier AUC score as a proxy.
These are shown in the bottom row of Table 2.
As we can see, even a simple model can generate
strong predictions using TF-IDF data.

6 Discussion

Hand-generated features vs. Deep Learning

In our ablation study (Table 1), eliminating hand-
generated or TF-IDF features had marginal impact
on overall F1 scores, whereas eliminating the word
vector embeddings generated by the LSTM with
attention led to a steep drop in performance. In the
future, substantively richer custom features could
be crafted, but as we found, given the high vari-
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ability of author styles and phrasing throughout the
dataset, this task proves challenging. Pretrained
word vector embeddings carry the advantage of be-
ing generated from massive English corpora and
thus may be able to better encode the citation con-
texts in their wide linguistic variability.

Deep learning approaches, however, suffer more
from overfitting relative to their hand-generated
peers. We found that during training, it was com-
mon for our model to easily achieve training F1
scores over 0.80 while at most achieving 0.30 on
validation sets even after reducing model complex-
ity, implementing heavy dropout, and early stop-
ping.

Author Overlap and Cross Domain Shift
A large challenge with this task was the nature of
the dataset and its train and test partition. Papers
and authors in the training set are separate from pa-
pers and authors in the test set, and these papers can
come from any domain of academic work. Thus,
vocabulary features tended to be weak due to vari-
ance across domains, which have different norms
regarding language and citations, and most impor-
tantly, domain-specific vocabulary. In addition, the
training set is small enough that there is large risk
of fitting to author idiosyncrasies in writing rather
than broad syntactical patterns in the citations. A
larger training set may alleviate such issues in the
future.

When exploring TF-IDF vectors and simple
multi-layer perceptrons, we discovered a huge
boost in performance when authors and papers
were allowed to overlap between train and valida-
tion sets (validation ROC-AUC scores of ∼ 0.95).
Although we changed this to more accurately emu-
late the competition test set, resulting in the AUC
scores reported in Table 2, the fact that we saw
good performance with a simple TF-IDF embed-
ding illustrates the impact of author overlap on
model performance. Future work could focus on
generating features that are author and domain in-
dependent.

More Textual Information is Better
We found that the full text of the citing articles was
crucial for our model. Not only were our full-text
hand-generated features more predictive than the
ones crafted from the given citation context, our
TF-IDF embeddings in the final model also utilized
neighboring sentences around the citation from the
full text. We often found that the given citation

context was far too limited to produce meaningful
features, and that the more predictive indicators
were found in the preceding and subsequent sen-
tences. We anticipate that using the abstracts or the
full texts of the cited articles (which were not avail-
able during the competition) would further improve
performance on predicting purpose, as we would be
able to generate features such as abstract similarity,
which Valenzuela et al. (Valenzuela et al., 2015),
and Pride and Knoth (Pride and Knoth, 2017) found
to be valuable in predicting influence.
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A: Hand-generated Features
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COMPARES_CONTRASTS: "recently",
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"studies", "reported", "others",
"normally", "showed", "in line
with", "despite", "relationship"
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